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Abstract
Using the notions of frame transform and of square integrable projective
representation of a locally compact group G, we introduce a class of isometries
(tight frame transforms) from the space of Hilbert–Schmidt operators in the
carrier Hilbert space of the representation into the space of square integrable
functions on the direct product group G×G. These transforms have remarkable
properties. In particular, their ranges are reproducing kernel Hilbert spaces
endowed with a suitable ‘star product’ which mimics, at the level of functions,
the original product of operators. A ‘phase space formulation’ of quantum
mechanics relying on the frame transforms introduced in the present paper,
and the link of these maps with both the Wigner transform and the wavelet
transform are discussed.

PACS numbers: 03.65.Ca, 03.65.Ta, 03.65.Wj, 02.20.Qs

1. Introduction

The formulation of quantum mechanics ‘on phase space’ dates back to the early stages of
development of quantum theory. As is well known, the foundations of this elegant formulation
have been laid by E Wigner in his 1932 celebrated paper [1], with the aim of exploring the
quantum corrections to classical statistical mechanics. Strictly related to Wigner’s work are
the pioneering studies of H Weyl on quantization [2]. On one hand, Wigner was interested
in associating with a quantum state a suitable phase space ‘quasi-probability distribution’
(association that leads to the Wigner transform). On the other hand, Weyl aimed at associating
with a classical observable—a function on phase space—a quantum observable in such a way
to overcome the ambiguities related to the ‘operator ordering’ (association that leads to the
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Weyl map). These procedures can be regarded as the two ‘arrows’ of a unique theoretical
framework that we may call the ‘quantization–dequantization theory’. This subject is a richly
branched, old—but still extremely vital—tree. Since it is really huge, we will not attempt
at giving even a brief overview; the reader may consult the collection of papers [3] (and the
bibliography therein) as a general reference on the subject.

It is also worth mentioning the fact that, quite recently, the impressive progress of
experimental techniques—as well as the need of gaining a deeper understanding of some
fundamental (and controversial) aspects of quantum mechanics—have motivated a renewed
interest in the description of quantum states by means of phase space functions, the so-called
‘quantum state tomography’ or simply ‘quantum tomography’; see, e.g. [4–9].

There is a deep link between the quantization–dequantization theory (including the
formalism of quantum tomography) and another huge research area—mainly focused on
applications to signal analysis—which we may globally call ‘(generalized) wavelet analysis’.
The main mathematical tool in wavelet analysis is that of frame [10], a notion that will
play a central role in the present paper. Again, we will make no attempt at providing an
overview on this vast and interesting subject; we will then refer the reader to the excellent
references [11–14]. It is a remarkable fact that several issues, concepts and techniques can
be translated ‘from one language into another’—from quantum theory into signal analysis
and vice versa—opening the way to new insights (see, e.g. [15]). Several anticipations of the
unified framework encompassing the quantization–dequantization theory and wavelet analysis
were already present in the pioneering work of Klauder (and his co-authors), who introduced
a ‘continuous representation theory’ [16, 17], and of Cahill and Glauber [18].

It turns out that, from the mathematical point of view, the main trait d’union between the
two mentioned subjects is the remarkable notion of square integrable representation [19–22].
In fact, using this invaluable mathematical tool, one is able to perform all the fundamental
tasks of the quantization–dequantization theory and of generalized wavelet analysis:

• to define generalized families of coherent states (covariant frames), see [11, 12, 23];
in particular, the standard family of coherent states of Schrödinger [24], Glauber [25],
Klauder [16] and Sudarshan [26];

• to obtain ‘discretized frames’ from the covariant frames; see, e.g. [27, 28];
• to define suitable—in the manner of Weyl–Wigner—quantization–dequantization maps;

see, e.g. [11, 12, 29, 30].

The aim of the present paper is to reconsider the previously mentioned link between
the quantization–dequantization theory and the generalized wavelet analysis. In fact, we
believe that to a renewed interest in this area of research should correspond a renewed study
of its conceptual and mathematical foundations. As we will try to show, this study leads,
in a quite natural way, to the definition of a certain class of ‘frame transforms’ associated
with square integrable representations. These transforms are isometries mapping a space
of Hilbert–Schmidt operators (which is, obviously, a Hilbert space) onto a space of square
integrable functions having remarkable properties. More precisely, given a square integrable
projective representation U of a locally compact group G in a Hilbert space H and a (suitable)
Hilbert–Schmidt operator T̂ in H, one can associate with T̂ an isometry DT̂ mapping B2(H)

(the space of Hilbert–Schmidt operators in H) into L2(G × G) (the Hilbert space of square
integrable C-valued functions on the direct product group G×G, with respect to the left Haar
measure). As will be shown, the isometry DT̂ has remarkable properties that can be regarded
as direct consequences of the fact that DT̂ is a frame transform; in particular:

(i) The range Ran(DT̂ ) of the isometry DT̂ is a ‘reproducing kernel Hilbert space’ embedded
in L2(G × G).
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(ii) The image, through the isometry DT̂ , of the product of operators in B2(H) is a ‘star
product of functions’ in Ran(DT̂ ).

(iii) The standard expectation value formula of quantum mechanics—〈Â〉ρ̂ = tr(Âρ̂), where
Â and ρ̂ are, respectively, a bounded selfadjoint operator and a density operator in H—
admits, in this framework, a suitable expression in terms of C-valued functions ‘on phase
space’.

The adjoint QT̂ of the isometry DT̂ , like the Weyl map, has a simple integral expression and
can be regarded as a ‘quantization map’.

The paper is organized as follows. In section 2, we discuss the notion of ‘frame transform’
and its main consequences. In section 3, we briefly review the definition of the Wigner
distribution and its relation with projective representations. Next, in section 4, we recall the
basic properties of square integrable projective representations, tools that are fundamental for
the definition of the (generalized) Wigner transform and of its reverse arrow, the (generalized)
Weyl map, see section 5; we will also argue that the generalized Wigner transform is not, in
general, a frame transform. Our analysis will culminate in the introduction of the class of frame
transforms mentioned before—section 6—and in the discussion of the main consequences from
the point of view of quantum mechanics, see section 7. In section 8, we consider a remarkable
example that allows us to show the link of our results with the formalism of s-parametrized
quasi-distributions developed by Cahill and Glauber [18]. Eventually, in section 9, a few
conclusions are drawn.

2. Frame transforms and star products

In this section, we will introduce the mathematical notions of ‘frame’ and of ‘frame transform’
that will be central in the following. In particular—in the present section and later, on the base
of our main results, in section 7—we will show that by means of these notions it is possible, in
a natural way, to define a class of ‘star products’ of functions and to introduce a formulation
of quantum mechanics ‘on phase space’. In the first part of the section, we will collect a few
basic facts on frames in Hilbert spaces, a subject which is discussed with plenty of applications
in several excellent references; see, e.g. [13, 14]. In the second part of the section, we will
focus on the peculiar case of frames in Hilbert–Schmidt spaces (of operators). As we will
show, in this case the theory of frames enjoys extra results reflecting the fact that a space of
Hilbert–Schmidt operators is not only a Hilbert space but is also endowed with the structure
of an algebra.

Let S be a separable complex Hilbert space (we will denote by 〈·, ·〉 the associated scalar
product) and X = (X,µ) a measure space. A family of vectors SX in S, labeled by points
in X,SX = {ψx ∈ S : x ∈ X}, is called a frame (in S, based on the measure space X ) if it
satisfies the following defining conditions:

• For every φ ∈ S, the function

� : X � x �→ 〈ψx, φ〉 ∈ C (1)

is µ-measurable and belongs to L2(X) ≡ L2(X,µ; C).
• The ‘stability condition’ is verified, namely,

α‖φ‖2
S � ‖�‖2

L2(X) =
∫

X

|�(x)|2 dµ(x) � β‖φ‖2
S , ∀ φ ∈ S, (2)

for some (fixed) α, β ∈ R such that 0 < α � β.
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A couple of strictly positive numbers α, β—such the the stability condition (2) is satisfied—are
called (lower and upper) frame bounds for the frame SX; in particular, the frame SX is said to
be tight if one can set α = β.

Therefore, a frame SX = {ψx}x∈X defines a frame transform (operator), i.e. the linear
operator

F : S � φ �→ � := 〈ψ(·), φ〉 ∈ L2(X), (3)

which is bounded

‖Fφ‖2
L2(X) � β‖φ‖2

S , ∀ φ ∈ S, (4)

injective, and admits a (in general, non-unique) bounded left inverse

α‖φ‖2
S � ‖Fφ‖2

L2(X), ∀ φ ∈ S. (5)

For every φ ∈ S, the C-valued function Fφ will be called the frame transform of φ.
Note that the existence of a bounded left inverse of F implies that the range of the frame

transform—Ran(F)—is closed in L2(X): Ran(F) = Ran(F). Specifically, F admits a (unique)
bounded pseudo-inverse F← : L2(X) → S, which is the linear operator determined by the
conditions

F←F = I, (F← is a left inverse of F) (6)

F←� = 0, ∀� ∈ Ran(F)⊥, (i.e. Ker(F←) = Ran(F)⊥) (7)

with I denoting the identity in S and Ran(F)⊥ the orthogonal complement of the subspace
Ran(F) of L2(X). Obviously, in the case where Ran(F) = L2(X), the pseudo-inverse
F← is nothing but the (bounded) inverse F−1. However, we stress that the case where
Ran(F) = L2(X) does not occur in several important examples; typically, Ran(F) is a proper
subspace of L2(X) consisting of functions with some regularity property (this happens, for
instance, in the case where X is a topological space and the frame map x �→ ψx is weakly
continuous).

It is clear that for the adjoint F∗ : L2(X) → S of F the following formula holds:

F∗� =
∫

X

�(x)ψx dµ(x), ∀� ∈ L2(X), (8)

where the integral (as all the vector-valued or operator-valued integrals henceforth) has to be
understood ‘in the weak sense’.

By means of the frame operator F and of its adjoint F∗, one can define the metric operator
of the frame SX, i.e. the map M̂ := F∗F : S → S, which is a bounded, definite positive linear

operator (with a bounded definite positive inverse M̂
−1

): αI � M̂ � βI. It is easy to verify,
using the defining conditions (6)–(7), that the following relation holds:

F← = M̂
−1

F∗. (9)

The metric operator allows us to define the dual frame of the frame SX, namely, the family of
operators

SX := {ψx ∈ S : ψx = M̂
−1

ψx,ψx ∈ SX}. (10)

We stress that the term ‘dual frame’ is coherent: one can easily show that SX is indeed a frame
(in S, based on X ). Note that, if the frame SX is tight, then F is—possibly up to a positive
factor—an isometry, the positive operator M̂ is a multiple of the identity, and SX coincides
with its dual frame SX up to, possibly, an irrelevant overall normalization factor; i.e., there is
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a strictly positive number r such that ψx = rψx,∀ x ∈ X. In particular, we will say that the
tight frame SX is normalized if r = 1.

Moreover, it is clear that denoting by F̃ the frame transform associated with the frame
SX, we have

F̃ = FM̂
−1; (11)

hence, the metric operator associated with the frame SX is M̂
−1

and the dual frame of SX is
SX. From relations (9) and (11) it follows that

F←� = F̃∗� =
∫

X

�(x)ψx dµ(x), ∀� ∈ L2(X). (12)

If, in particular, the frame SX is tight, then the pseudo-inverse F← coincides—possibly up to
a positive factor—with F∗.

By means of a couple of mutually dual frames SX and SX, one can write some
remarkable formulae. In fact, taking into account formula (12), and using the Dirac notation
|φ〉〈ψ |η ≡ 〈ψ, η〉φ,ψ, φ, η ∈ S, we can write the following resolutions of the identity:

I = F←F =
∫

X

|ψx〉〈ψx | dµ(x)

= M̂

∫
X

|ψx〉〈ψx | dµ(x)M̂
−1 =

∫
X

|ψx〉〈ψx | dµ(x); (13)

thus, we have a ‘reconstruction formula’ for the frame transform Fφ, i.e.

φ =
∫

X

(Fφ)(x)ψx dµ(x), ∀ φ ∈ L2(X), (14)

and an analogous formula for the (dual) frame transform F̃φ. From relations (13) we get
immediately

M̂ = M̂

∫
X

|ψx〉〈ψx | dµ(x) =
∫

X

|ψx〉〈ψx | dµ(x) (15)

and

M̂
−1 = M̂

−1
∫

X

|ψx〉〈ψx | dµ(x) =
∫

X

|ψx〉〈ψx | dµ(x). (16)

Moreover, observe that for the orthogonal projection P̂Ran(F) onto the subspace Ran(F) of
L2(X) we have the following remarkable expression:

(P̂Ran(F)�)(x) = (FF←�)(x) =
∫

X

	(x, x ′)�(x ′) dµ(x ′), ∀� ∈ L2(X), (17)

for µ-almost all (in short, for µ-a.a.) x ∈ X, where 	(·, ·) is the C-valued function on X × X

defined by

	(x, x ′) := 〈ψx,ψ
x ′ 〉, ∀ x, x ′ ∈ X. (18)

Therefore, the range of the frame operator is a reproducing kernel Hilbert space (in short,
r.k.H.s.) [31–33].

Remark 1. Strictly speaking, Ran(F) is a ‘r.k.H.s. embedded in L2(X)’. The ‘true’
r.k.H.s. is the vector space composed of every C-valued function � on X of the form
� = 〈ψ(·), φ〉, φ ∈ S. Embedding this r.k.H.s. in L2(X) amounts to identifying such a
function � with the equivalence class of µ-measurable C-valued functions on X that coincide
with � for µ-a.a. x ∈ X, as is tacitly done usually (e.g., in definition (3)).
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It is an interesting fact that every bounded operator in the r.k.H.s. Ran(F) is an integral
operator. Precisely, as the reader may check using formula (12), for every operator Â in B(S)

(the Banach space of bounded linear operators in S), we have

((FÂF←)�)(x) =
∫

X

	(Â; x, x ′)�(x ′) dµ(x ′), ∀� ∈ L2(X), (19)

for µ-a.a. x ∈ X, where

	(Â; x, x ′) := 〈ψx, Âψx ′ 〉, ∀ x, x ′ ∈ X; (20)

thus 	(x, x ′) = 	(I ; x, x ′).
Denoting by B1(S) the Banach space of trace class operators in S, we now prove the

following important result:

Proposition 1 (the ‘trace formula for frames’). With the previous notations and assumptions,
for every operator Â in B1(S), the following formula holds:

tr(Â) =
∫

X

	(Â; x, x) dµ(x). (21)

Assume now that the frame {ψx}x∈X is tight. Then, for every positive bounded operator B̂ in
S, 	(B̂; x, x) � 0, and∫

X

	(B̂; x, x) dµ(x) < +∞ (22)

if and only if B̂ is contained in B1(S).

Proof. Since, as is well known, every trace class operator T̂ admits a decomposition of the
form

T̂ = T̂ 1 − T̂ 2 + i(T̂ 3 − T̂ 4), (23)

where T̂ 1, T̂ 2, T̂ 3, T̂ 4 are positive trace class operators, by linearity of the trace we can prove
relation (21)—with no loss of generality—for a generic positive trace class operator Â in S.

Let us suppose, for the moment, that the frame {ψx}x∈X is tight; we can assume that it is
normalized (i.e. SX = SX). Then, choosing an arbitrary orthonormal basis {ηn}n∈N in S and
denoting by Â

1
2 the (positive) square root of Â, we have

tr(Â) =
∑
n∈N

〈
Â

1
2 ηn, Â

1
2 ηn

〉 =
∑
n∈N

∫
X

〈
Â

1
2 ηn, ψx

〉〈
ψx, Â

1
2 ηn

〉
dµ(x)

=
∫

X

∑
n∈N

〈
ψx, Â

1
2 ηn

〉〈
Â

1
2 ηn, ψx

〉
dµ(x)

=
∫

X

∑
n∈N

〈
Â

1
2 ψx, ηn

〉〈
ηn, Â

1
2 ψx

〉
dµ(x), (24)

where the permutation of the (possibly infinite) sum with the integral is allowed by the
positivity of the integrand functions. Hence, we obtain

tr(Â) =
∫

X

〈Â 1
2 ψx, Â

1
2 ψx〉 dµ(x) =

∫
X

〈ψx, Âψx〉 dµ(x). (25)

This proves the first assertion of the statement in the case of a tight frame.
For a generic frame {ψx}x∈X in S one can argue as follows. First observe that—denoting,

as above, by M̂ the metric operator of this frame—the set
{
ψ̃x = M̂

− 1
2 ψx = M̂

1
2 ψx

}
x∈X

is a
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normalized tight frame (exploiting relations (13), the proof of this assertion is straightforward).
Next, consider that, for every Â ∈ B1(S),

tr(Â) = tr
(
M̂

1
2 ÂM̂

− 1
2
) =

∫
X

〈
ψ̃x, M̂

1
2 ÂM̂

− 1
2 ψ̃x

〉
dµ(x)

=
∫

X

〈ψx, Âψx〉 dµ(x), (26)

where we have used the cyclic property of the trace and the result of the first part of the proof.
Let us prove the second assertion of the statement. Assume that the frame {ψx}x∈X is

tight (we can suppose that it is normalized), and let B̂ be a positive bounded operator in S
which is not contained in B1(S). Then, arguing as above, we have

+∞ =
∑
n∈N

〈ηn, B̂ηn〉 =
∑
n∈N

〈
B̂

1
2 ηn, B̂

1
2 ηn

〉 =
∫

X

〈
B̂

1
2 ψx, B̂

1
2 ψx

〉
dµ(x)

=
∫

X

〈ψx, B̂ψx〉 dµ(x), (27)

where {ηn}n∈N is an arbitrary orthonormal basis in S.
The proof is now complete. �

At this point, we proceed to the second part of the section, where we will specialize
the scheme outlined above to the case where S = B2(H), with B2(H) denoting the space of
Hilbert–Schmidt operators in a (separable complex) Hilbert space H (we will adopt the symbol
〈·, ·〉B2(H) for denoting the scalar product in B2(H): 〈Â, B̂〉B2(H) := tr(Â∗B̂), Â, B̂ ∈ B2(H)).
We recall the fact that the Hilbert space B2(H) is a H∗-algebra [34], and a two-sided ∗-ideal
in the C∗-algebra of bounded operators B(H) (see, e.g. [35]).

Then, let {T̂ y}y∈Y be a frame in B2(H), based on a measure space Y = (Y, ν), and let
{T̂ y}y∈Y be the dual frame. In order to avoid confusion, we will now denote by D the frame
transform associated with the frame {T̂ y}y∈Y and by Q its pseudo-inverse; thus, we will set

D ≡ F : B2(H) → L2(Y ) ≡ L2(Y, ν; C) and Q ≡ F← : L2(Y ) → B2(H). (28)

It is natural to wonder if, in addition to the formulae recalled above, one can suitably express
the product of operators in B2(H) in terms of the frame transforms associated with these
operators. Denoting by A,B the frame transforms of Â, B̂ ∈ B2(H), respectively, i.e.
A = DÂ := 〈T̂ (·), Â〉B2(H) ∈ L2(Y ), B = DB̂ ∈ L2(Y ), we can set

(A � B)(y) := (DÂB̂)(y). (29)

Therefore, the product of operators induces, through the frame transform D, a bilinear
map (·) � (·) : Ran(D) × Ran(D) → Ran(D). As we are going to show, exploiting the
reconstruction formulae

Â =
∫

Y

A(y)T̂ y dν(y), B̂ =
∫

Y

B(y)T̂ y dν(y), (30)

one can obtain a suitable expression for this bilinear map.

Remark 2. The integrals in the reconstruction formulae (30) are weak integrals of vector-
valued functions with respect to the scalar product of B2(H). Then, a fortiori, they are weak

7
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integrals of bounded-operator-valued functions; indeed〈
φ,

(∫
Y

A(y)T̂ y dν(y)

)
ψ

〉
= 〈|ψ〉〈φ|,

∫
Y

A(y)T̂ y dν(y)〉B2(H)

=
∫

Y

A(y)〈|ψ〉〈φ|, T̂ y〉B2(H) dν(y)

=
∫

Y

A(y)〈φ, T̂ yψ〉 dν(y), (31)

for any couple of vectors φ,ψ ∈ H.

It turns out that the bilinear map (·) � (·), induced through the frame transform by the
product of operators inB2(H), can be expressed as a ‘non-local’—i.e. non-pointwise—product
of functions defined on the range of D; in fact, we have the following result:

Proposition 2. With the previous notations and assumptions, for any Â, B̂ ∈ B2(H), the
following formula holds:

(A � B)(y) =
∫

Y

dν(y1)

∫
Y

dν(y2)κ(y, y1, y2)A(y1)B(y2)

=
∫

Y

dν(y2)

∫
Y

dν(y1)κ(y, y1, y2)A(y1)B(y2), (32)

for ν-a.a. y ∈ Y , where the integral kernel κ : Y × Y × Y → C is defined by

κ(y, y1, y2) := 〈T̂ y, T̂
y1 T̂ y2〉B2(H) = tr(T̂ ∗

yT̂
y1 T̂ y2). (33)

Proof. As anticipated, we will exploit the reconstruction formulae (30). Let us prove the
second of relations (32). Observe that, for any Â, B̂ ∈ B2(H), we have

(A � B)(y) := 〈T̂ y, ÂB̂〉B2(H) = tr(T̂ ∗
yÂB̂) = tr((Â∗T̂ y)

∗B̂) = 〈Â∗T̂ y, B̂〉B2(H). (34)

Hence, using the reconstruction formula for B̂, we find

(A � B)(y) = 〈Â∗T̂ y, B̂〉B2(H) =
∫

Y

dν(y2)〈Â∗T̂ y, T̂
y2〉B2(H)B(y2)

=
∫

Y

dν(y2)〈T̂ y(T̂
y2)∗, Â〉B2(H)B(y2), (35)

where we have used the cyclic property of the trace

〈Â∗T̂ y, T̂
y2〉B2(H) = tr(T̂ ∗

yÂT̂ y2) = tr(T̂ y2 T̂ ∗
yÂ) = 〈T̂ y(T̂

y2)∗, Â〉B2(H). (36)

Next, using the reconstruction formula for Â, we obtain

(A � B)(y) =
∫

Y

dν(y2)〈T̂ y(T̂
y2)∗, Â〉B2(H)B(y2)

=
∫

Y

dν(y2)

∫
Y

dν(y1)〈T̂ y(T̂
y2)∗, T̂ y1〉B2(H)A(y1)B(y2)

=
∫

Y

dν(y2)

∫
Y

dν(y1)〈T̂ y, T̂
y1 T̂ y2〉B2(H)A(y1)B(y2). (37)

The proof the first of relations (32) is similar. �

8
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We will call the non-local product of functions (29) star product4 associated with the
frame {T̂ y}y∈Y . Let us observe that the definition of the star product of functions in Ran(D)

can be extended, in a natural way, to all functions in L2(Y ) by setting

�1 � �2 := D
(
(Q�1)(Q�2)

)
, ∀�1,�2 ∈ L2(Y ). (38)

Note that, since Q = QP̂Ran(D), with P̂Ran(D) denoting the orthogonal projection onto Ran(D),
we have

�1 � �2 = (P̂Ran(D)�1) � (P̂Ran(D)�2). (39)

One can easily prove that the ‘extended star product’—namely, the bilinear map (·) � (·) :
L2(Y ) × L2(Y ) → L2(Y ) defined by formula (38)—can be still expressed as a non-local
product of functions; indeed:

Proposition 3. With the previous notations and assumptions, for any �1,�2 ∈ L2(Y ), the
following formula holds:

(�1 � �2)(y) =
∫

Y

dν(y1)

∫
Y

dν(y2)κ(y, y1, y2)�1(y1)�2(y2)

=
∫

Y

dν(y2)

∫
Y

dν(y1)κ(y, y1, y2)�1(y1)�2(y2), (40)

for ν-a.a. y ∈ Y .

Proof. Just recall that

Q� =
∫

Y

�(y)T̂ y dν(y), ∀� ∈ L2(Y ), (41)

apply definition (38), and argue as in the proof of proposition 2. �

Since B2(H) is a two-sided ∗-ideal in the C∗-algebra B(H) of bounded operators in H,
for every Â ∈ B(H) one can define the linear maps

LÂ : B2(H) � B̂ �→ ÂB̂ ∈ B2(H) and RÂ : B2(H) � B̂ �→ B̂Â ∈ B2(H). (42)

The maps LÂ and RÂ are bounded linear operators. Indeed, as is well known [35], we have

‖LÂB̂‖B2(H) � ‖Â‖‖B̂‖B2(H) and ‖RÂB̂‖B2(H) � ‖Â‖‖B̂‖B2(H); (43)

from this relation follows in particular that ‖LÂ‖ � ‖Â‖ and ‖RÂ‖ � ‖Â‖. One can actually
show that

‖LÂ‖ = ‖RÂ‖ = ‖Â‖. (44)

Note that, if Â ∈ B(H) is selfadjoint, then the bounded operators LÂ and RÂ in B2(H) are
selfadjoint too. The operators LÂ and RÂ are suitably represented in the space of frame
transforms Ran(D); i.e.

Proposition 4. For every bounded operator Â ∈ B(H) and every Hilbert–Schmidt operator
B̂ ∈ B2(H), the following formulae hold:

((DLÂQ)B)(y) = (DÂB̂)(y) =
∫

Y

dν(y ′)χL(Â; y, y ′)B(y ′), (45)

4 We recall that the notion of star product of functions on phase space has been extensively studied in the literature;
see, e.g., the classical papers [36–38] and the recent contributions [4, 6]. Here we show how a notion of this kind
arises in a natural way considering frames of Hilbert–Schmidt operators.

9
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((DRÂQ)B)(y) = (DB̂Â)(y) =
∫

Y

dν(y ′)χR(Â; y, y ′)B(y ′), (46)

for ν-a.a. y ∈ Y , where B = DB̂ and

χL(Â; y, y ′) := 〈T̂ y, ÂT̂ y ′ 〉B2(H), χR(Â; y, y ′) := 〈T̂ y, T̂
y ′
Â〉B2(H); (47)

hence

ÂB̂ =
∫

Y

dν(y1)

∫
Y

dν(y2)χ
L(Â; y1, y2)B(y2)T̂

y1 , (48)

B̂Â =
∫

Y

dν(y1)

∫
Y

dν(y2)χ
R(Â; y1, y2)B(y2)T̂

y1 . (49)

Moreover, if the frame {T̂ y}y∈Y is tight, then, for every operator Â ∈ B(H), we have

χL(Â; y, y ′) = χL(Â∗; y ′, y)∗ and χR(Â; y, y ′) = χR(Â∗; y ′, y)∗. (50)

Proof. Let us prove formula (45). By definition we have

(DÂB̂)(y) = 〈T̂ y, ÂB̂〉B2(H). (51)

Then, exploiting the reconstruction formula for the Hilbert–Schmidt operator B̂, we get

(DÂB̂)(y) = 〈Â∗T̂ y, B̂〉B2(H)

=
∫

Y

dν(y ′)〈Â∗T̂ y, T̂
y ′ 〉B2(H)B(y ′)

=
∫

Y

dν(y ′)〈T̂ y, ÂT̂ y ′ 〉B2(H)B(y ′), (52)

which is what we wanted to prove. The proof of formula (46) is analogous.
Let us suppose, now, that the frame {T̂ y}y∈Y is tight. Then, we have

χL(Â; y ′, y)∗ = tr(T̂ ∗
y ′ÂT̂ y)∗ = tr((T̂ y)∗Â∗T̂ y ′) = tr(T̂ ∗

yÂ
∗T̂ y ′

)

= χL(Â∗; y, y ′). (53)

In a similar way, one proves the analogous relation for the function χR(Â; ·, ·).
The proof is complete. �

It is worth stressing that, for every bounded operator Â ∈ B(H), both the functions
y ′ �→ χL(Â∗; y ′, y) and y ′ �→ χR(Â∗; y ′, y) are contained in Ran(D). If the frame {T̂ y}y∈Y

is tight, due to this fact and to the first of relations (50), for every � ∈ L2(Y ) we have∫
Y

dν(y ′)χL(Â; y, y ′)�(y ′) =
∫

Y

dν(y ′)χL(Â∗; y ′, y)∗�(y ′)

=
∫

Y

dν(y ′)χL(Â∗; y ′, y)∗(P̂Ran(D)�)(y ′)

=
∫

Y

dν(y ′)χL(Â; y, y ′)(P̂Ran(D)�)(y ′). (54)

Assume that the frame {T̂ y}y∈Y is tight and normalized (so that D is an isometry). Then, since
P̂Ran(D) = DQ, from the previous relation and from formula (45) we obtain∫

Y

dν(y ′)χL(Â; y, y ′)�(y ′) = (D(ÂQ�))(y) = (D(ÂQP̂Ran(D)�))(y), (55)

10
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for all � ∈ L2(Y ); furthermore, for any �,� ∈ L2(Y ) we have∫
Y

dν(y)

∫
Y

dν(y ′)χL(Â; y, y ′)�(y)∗�(y ′) = 〈P̂Ran(D)�,D(ÂQ�)〉B2(H)

= 〈DQ�,D(ÂQ�)〉B2(H)

= 〈Q�, ÂQ�〉B2(H)

= 〈QP̂Ran(D)�, ÂQP̂Ran(D)�〉B2(H). (56)

It is obvious that a completely analogous relation holds for the integral kernel χR(Â; ·, ·).
Remark 3. Note that the integral kernels χL(Â; ·, ·) and χR(Â; ·, ·) are nothing but the kernels
of the bounded (super-)operators LÂ and RÂ with respect to the frame {T̂ y}y∈Y (see formula
(20)). The ‘left’ and ‘right’ integral kernels form vector spaces that can be endowed with the
structure of a C∗-algebra isomorphic to the algebra of bounded operators B(H). Differently
from the case of Ran(D) ≡ Ran(F), we will assume that these vector spaces are composed of
functions rather than of equivalence classes of functions (see remark 1). Observe, moreover,
that for any Â1, Â2 ∈ B(H) we have

χL(Â1Â2; y1, y2) =
∫

Y

dν(y)χL(Â1; y1, y)χL(Â2; y, y2), (57)

for all y1 ∈ Y and all y2 ∈ Y ; indeed, exploiting the resolution of the identity generated by the
frame {T̂ y}y∈Y , we get

χL(Â1Â2; y1, y2) = 〈T̂ y1 , Â1Â2T̂
y2〉B2(H) = 〈Â∗

1T̂ y1 , Â2T̂
y2〉B2(H)

=
∫

Y

dν(y)〈Â∗
1T̂ y1 , T̂

y〉B2(H)〈T̂ y, Â2T̂
y2〉B2(H)

=
∫

Y

dν(y)χL(Â1; y1, y)χL(Â2; y, y2). (58)

Clearly, an analogous expression holds for the integral kernel χR(Â1Â2; ·, ·), i.e.

χR(Â1Â2; y1, y2) =
∫

Y

dν(y)χR(Â2; y1, y)χR(Â1; y, y2). (59)

Therefore—denoting by B(H)R the Jordan–Lie algebra [39] of bounded selfadjoint operators
in H, endowed with the Jordan product Â1 ◦ Â2 := 1

2 (Â1Â2 + Â2Â1) and with the Lie bracket
{Â1, Â2} := 1

i [Â1, Â2]—we find

χL(Â1 ◦ Â2; y1, y2) = 1

2

∫
Y

dν(y)(χL(Â1; y1, y)χL(Â2; y, y2)

+ χL(Â2; y1, y)χL(Â1; y, y2)), (60)

χL({Â1, Â2}; y1, y2) = 1

i

∫
Y

dν(y)(χL(Â1; y1, y)χL(Â2; y, y2)

−χL(Â2; y1, y)χL(Â1; y, y2)), (61)

for any Â1, Â2 ∈ B(H)R. Analogous relations hold for χR(Â1◦Â2; ·, ·) and χR({Â1, Â2}; ·, ·).
Let us now suppose to have, simultaneously, a couple of frames: the frame {T̂ y}y∈Y

in the space of Hilbert–Schmidt operators B2(H) and a frame {ψx}x∈X in the Hilbert space
H, based on a measure space X = (X,µ). A situation of this kind will be considered in
section 7. Then, in addition to the collection of formulae previously obtained, we have the
following result:

11
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Proposition 5. For every bounded operator Â ∈ B(H), every Hilbert–Schmidt operator
B̂ ∈ B2(H) and every trace class operator ρ̂ ∈ B1(H), the following formulae hold:

	(B̂; x, x ′) := 〈ψx, B̂ψx ′ 〉 =
∫

Y

dν(y)�(x, x ′, y)B(y), (62)

tr(ρ̂) =
∫

X

dµ(x)

∫
Y

dν(y)γ (x, y)ρ(y), (63)

tr(Âρ̂) =
∫

X

dµ(x)

∫
Y

dν(y1)

∫
Y

dν(y2)γ (x, y1)χ
L(Â; y1, y2)ρ(y2)

=
∫

X

dµ(x)

∫
Y

dν(y1)

∫
Y

dν(y2)γ (x, y1)χ
R(Â; y1, y2)ρ(y2), (64)

where B = DB̂, ρ = Dρ̂, and we have set: �(x, x ′, y) := 〈ψx, T̂
yψx ′ 〉, γ (x, y) :=

〈ψx, T̂
yψx〉 = �(x, x, y). Assume now that the frame {ψx}x∈X is tight. Then, for every positive

Hilbert–Schmidt operator B̂ in H,
∫
Y

dν(y)γ (x, y)(DB̂)(y) = 〈ψx, B̂ψx〉 ∝ 〈ψx, B̂ψx〉 �
0, and ∫

X

dµ(x)

∫
Y

dν(y)γ (x, y)
(
DB̂

)
(y) < +∞ (65)

if and only if B̂ is contained in B1(H).

Proof. Taking into account remark 2, formula (62) follows from the reconstruction formula
for the operator B̂.

Let us prove formula (63). Applying the trace formula (21) to ρ̂, and using formula (62)
for the integral kernel 	(ρ̂; ·, ·), we get

tr(ρ̂) =
∫

X

dµ(x)	(ρ̂; x, x) =
∫

X

dµ(x)

∫
Y

dν(y)�(x, x, y)ρ(y). (66)

Let us now prove the first of relations (64). Applying formula (63) to the trace class
operator Âρ̂, we get

tr(Âρ̂) =
∫

X

dµ(x)

∫
Y

dν(y1)γ (x, y1)
(
DÂρ̂

)
(y1). (67)

Next, by virtue of formula (45), we obtain

tr(Âρ̂) =
∫

X

dµ(x)

∫
Y

dν(y1)γ (x, y1)

∫
Y

dν(y2)χ
L(Â; y1, y2)ρ(y2), (68)

where ρ = Dρ̂. The proof of the second of relations (64) is analogous.
The proof of the second assertion of the statement follows from the second assertion of

proposition 1. �

The frame transform D ≡ F associated with a frame in B2(H) may be regarded as
a ‘dequantization map’, which associates with any operator in B2(H) a square integrable
function. Conversely, the pseudo-inverse Q ≡ F← may be regarded as a ‘quantization
map’ which suitably associates an operator with a C-valued function. In this context, the
counterpart of the product of operators is given by the star product of functions. At this point,
the reader must have recognized the typical scheme underlying the subject which is usually
called ‘quantum mechanics on phase space’: the Wigner transform (dequantization), the Weyl
map (quantization) and the Grönewold–Moyal product of functions (star product), see [3].
In the following, we will show that there is a precise link between the ‘frame formalism’
discussed in the present section and the Weyl–Wigner–Grönewold–Moyal formalism for
quantum mechanics.

12
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3. Quantum mechanics on phase space: the Wigner distribution

As is well known, due to the indetermination relations, the notion of phase space is not
straightforward in the quantum-mechanical setting as is in the classical setting. Since particles
cannot have, simultaneously, a well-defined position q and momentum p, it is not possible to
define a genuine phase space probability distribution for a quantum particle as it happens in
classical statistical mechanics; in other words, quantum mechanics is not a statistical theory
in the classical sense. It is, however, possible to introduce a notion of ‘quasi-probability
distribution’ or ‘quasi-distribution’ that allows one to express quantum averages in a way
analogous to classical averages.

In the following, for the sake of notational simplicity, we will consider the case of a
(1 + 1)-dimensional phase space (with coordinates denoted by q, p); the extension to the
ordinary (3 + 3)-dimensional case is straightforward. In the classical setting, a particle can
be described by a classical probability distribution on phase space (q, p) �→ P(q, p) (or,
more generally, by a probability measure). The average (at a certain time) of a function of
position and momentum (q, p) �→ A(q, p)—namely, of a classical observable—is given by
the expression

〈A〉P =
∫

R×R

A(q, p)P(q, p) dq dp. (69)

On the other hand, a quantum-mechanical state is described by a density operator ρ̂—a positive
trace class operator of unit trace—and the mean value of a quantum observable Â, which (by
virtue of the spectral decomposition of a selfadjoint operator) can always be assumed to be a
bounded selfadjoint operator, is given by the well-known ‘trace formula’

〈Â〉ρ̂ = tr(Âρ̂). (70)

If one tries to establish a link between the classical formula (69) and the quantum one (70),
one has to face the following problem: how one can set a suitable correspondence between
a quantum observable Â (i.e. a selfadjoint operator, in the standard formulation of quantum
mechanics) and a ‘corresponding classical-like observable’ (q, p) �→ A(q, p) (a numerical
function), and between a density operator ρ̂ and a suitable ‘quantum quasi-distribution
function’ (q, p) �→ Qρ̂ (q, p), in such a way that it is then possible to express the expectation
value of a quantum observable in a ‘formally classical fashion’, i.e. as a phase space average
of the type (69)

〈Â〉ρ̂ =
∫

R×R

A(q, p)Qρ̂ (q, p) dq dp. (71)

It is a remarkable fact that this problem can be solved—at least partially—within a theoretical
scheme usually called ‘Weyl–Wigner formulation of quantum mechanics’, or, in a slightly
more general sense, ‘phase space formulation of quantum mechanics’. It turns out that the
correspondence operator ↔ numerical function is of the same kind (i.e. it is obtained using
the same formulae) both for the density operator ρ̂ and the observable Â (at least for a suitable
class of observables).

As is well known, the notion of quasi-distribution function has been introduced by
Wigner in his celebrated paper [1], with the aim of exploring the quantum corrections to
classical statistical mechanics. The quasi-distribution introduced by Wigner—which is still
regarded nowadays as the ‘standard’ quasi-distribution function (other quasi-distributions,
with remarkable applications in quantum optics, can also be defined, see [18, 40, 41]; see
also the recent proposals [42, 43])—is universally known as the Wigner distribution. In the
following, we will recall a few basic results; for the proofs, the reader may consult standard

13



J. Phys. A: Math. Theor. 41 (2008) 285304 P Aniello et al

references on the subject like [29, 30]. As above, in order to simplify notation, we will
consider the case of a quantum particle with a single degree of freedom (hence, we will deal
with a (1 + 1)-dimensional phase space). Then, let us denote by ψ a vector in the Hilbert space
L2(R) and, using the Dirac notation, let us set ψ̂ ≡ |ψ〉〈ψ |. With the vector ψ—or, more
precisely, with the operator ψ̂—one can associate the function

Qψ̂ : R × R −→ C, (72)

defined by (h̄ = 1)

Qψ̂ (q, p) := 1

2π

∫
R

e−ipxψ
(
q − x

2

)∗
ψ

(
q +

x

2

)
dx. (73)

If ψ ∈ L2(R) is, in particular, a normalized nonzero vector (i.e. ‖ψ‖ = 1), then Qψ̂ is called
the ‘Wigner distribution associated with the pure state ψ̂’. Note that, for almost all q ∈ R, the
function

R � x �→ ψ
(
q − x

2

)∗
ψ

(
q +

x

2

)
∈ C (74)

is contained in L1(R); hence the Fourier integral in definition (73) is indeed an ordinary
integral. Moreover, this integral can be regarded as 1/π times the scalar product of the
normalized functions

R � x �→ eipx

√
2

ψ
(
q − x

2

)
∈ C and R � x �→ 1√

2
ψ

(
q +

x

2

)
∈ C; (75)

hence, according to the Cauchy–Schwarz inequality, we have

|Qψ̂ (q, p)| � 1

π
‖ψ‖2, ∀ ψ ∈ L2(R), ∀ q, p ∈ R. (76)

One can easily prove that the function Qψ̂ assumes only real values.
As far as we know, it is not completely clear in what way Wigner obtained formula (73). It

seems that he achieved this expression by requiring that some general properties were satisfied
in a ‘simple way’ (see [44] and references therein); in particular:

(i) As already mentioned, the function Qψ̂ assumes only real values.
(ii) The marginal sub-distributions

Qψ̂ (q, ·) : R � p �→ Qψ̂ (q, p), q ∈ R,Qψ̂ (·, p) : R � q �→ Qψ̂ (q, p), p ∈ R,

(77)

satisfy the following relations:∫
R

Qψ̂ (q, p) dp = |ψ(q)|2, for a.a. q ∈ R, (78)∫
R

Qψ̂ (q, p) dq = |(Fψ)(p)|2, for a.a. p ∈ R, (79)

where F : L2(R) → L2(R) is the Fourier–Plancherel operator. We remark that,
rigorously, the function Qψ̂ and the associated marginal sub-distributions are not
integrable, in general. However, one can easily prove that, if Fψ belongs to L1(R)

(hence, Fψ ∈ L1(R) ∩ L2(R)), then the marginal sub-distribution Qψ̂ (q, ·) is contained
in L1(R) too and relation (78) holds true. Analogously, if ψ belongs to L1(R) (∩L2(R)),
then Qψ̂ (·, p) is contained in L1(R) and relation (79) is satisfied as well. Note that, if
relation (78) holds (in particular, if Fψ ∈ L1(R)), then∫

R

(∫
R

Qψ̂ (q, p) dp

)
dq = ‖ψ‖2; (80)

14



J. Phys. A: Math. Theor. 41 (2008) 285304 P Aniello et al

similarly, if relation (79) holds (in particular, if ψ ∈ L1(R)), then∫
R

(∫
R

Qψ̂ (q, p) dq

)
dp = ‖ψ‖2. (81)

Moreover, it is possible to prove that if ψ belongs to the Schwartz space S(R), then Qψ̂

belongs to S(R × R); thus, both relations (78) and (79) hold true, and we have that∫
R×R

Qψ̂ (q, p) dq dp = ‖ψ‖2. (82)

However, we stress that, for ‖ψ‖ = 1, the Wigner distribution associated with the pure
state ψ̂ cannot be regarded as a genuine probability distribution as it assumes, in general,
both positive and negative values (this fact is already explicitly observed in Wigner’s
original paper [1]).

(iii) The function Qψ̂ behaves in an ‘elementary way’ with respect to position and momentum
translations, namely

ψ(q) �→ ψ(q − q ′) = (e−iq ′p̂ψ)(q) �⇒ Qψ̂ (q, p) �→ Qψ̂ (q − q ′, p), (83)

ψ(q) �→ eip′qψ(q) = (eip′q̂ψ)(q) �⇒ Qψ̂ (q, p) �→ Qψ̂ (q, p − p′), (84)

where we have denoted by q̂ and p̂ the standard position and momentum operators in
L2(R), respectively.

However, we point out that it is the peculiar property of satisfying a relation of the type
(71) for the expectation values of observables, the salient feature of the Wigner distribution.
As will be shown later on, one can actually associate with any trace class operator in L2(R)

(in particular, with any physical state, i.e. not only with a pure state) a suitable (generalized)
Wigner distribution; this association will then allow us to obtain an expression of the type
(71). The first step of this generalization is to associate with any finite-rank operator a Wigner
distribution (we will not attempt at establishing formula (71) itself, for the moment). To this
aim, for any couple of vectors φ,ψ in L2(R), let us set

Qφ̂ψ (q, p) := 1

2π

∫
R

e−ipxψ
(
q − x

2

)∗
φ

(
q +

x

2

)
dx; (85)

this expression is a straightforward generalization of formula (73), relating a generic rank-one
operator φ̂ψ ≡ |φ〉〈ψ | with a C-valued function. Note that, as in the case of Qψ̂ ≡ Qψ̂ψ , the

function Qφ̂ψ is well defined since that map x �→ φ
(
q − x

2

)∗
ψ

(
q + x

2

)
belongs to L2(R) for

all q ∈ R. It is also immediate to observe that, for any q, p ∈ R, |Qφ̂ψ (q, p)| � 1
π
‖φ‖‖ψ‖,

and

Qφ̂ψ (q, p)∗ = 1

2π

∫
R

eipxψ
(
q − x

2

)
φ

(
q +

x

2

)∗
dx

= 1

2π

∫
R

e−ipxφ
(
q − x

2

)∗
ψ

(
q +

x

2

)
dx, (86)

hence Qφ̂ψ (q, p)∗ = Qψ̂φ(q, p),∀ φ,ψ ∈ L2(R). One can prove, moreover, that for any
φ,ψ ∈ L2(R) the function Qφ̂ψ is contained in L2(R × R), and the following important
relation—the Moyal identity—holds∫

R×R

Q
̂φ1ψ1

(q, p)∗Q
̂φ2ψ2

(q, p) dq dp = 1

2π
〈φ1, φ2〉〈ψ2, ψ1〉 = 1

2π
tr(φ̂1ψ1

∗
φ̂2ψ2), (87)

15



J. Phys. A: Math. Theor. 41 (2008) 285304 P Aniello et al

for all φ1, ψ1, φ2, ψ2 ∈ L2(R); in particular, for φ1 = ψ1 = φ2 = ψ2 ≡ ψ , and recalling that
Qψ̂ (q, p) ∈ R, we have∫

R×R

Qψ̂ (q, p)2 dq dp = 1

2π
‖ψ‖4 (88)

(compare with formula (82); note, however, that formula (88) holds for every vector ψ in
L2(R)).

Consider now the family of unitary operators {U(q, p)}q,p∈R ⊂ U(L2(R)) (given a Hilbert
space H, we denote by U(H) the unitary group of H) defined by

U(q, p) := exp (i(pq̂ − qp̂))

= e− i
2 qp exp(ipq̂) exp(−iqp̂) = e

i
2 qp exp(−iqp̂) exp(ipq̂), q, p ∈ R. (89)

One can prove (see [12]) that the function tr(U(·, ·)∗φ̂ψ)) : (q, p) �→ tr(U(q, p)∗φ̂ψ) belongs
to L2(R × R) and the following relation holds:

Qφ̂ψ (q, p) = 1

2π
(Fsp tr(U(·, ·)∗φ̂ψ))(q, p), (90)

where Fsp : L2(R × R) → L2(R × R) is the symplectic Fourier transform, i.e. the unitary
operator determined by

(Fspf )(q, p) = 1

2π

∫
R×R

f (q ′, p′) ei(qp′−pq ′) dq ′dp′, ∀f ∈ L1(R × R) ∩ L2(R × R).

(91)

Recall that Fsp enjoys the remarkable property of being both unitary and selfadjoint

Fsp = F∗
sp, F2

sp = I. (92)

Thus, for any φ,ψ ∈ L2(R), the Wigner distribution is the symplectic Fourier transform of
the function

Vφ̂ψ : R × R � (q, p) �→ (2π)−1 tr(U(q, p)∗φ̂ψ) ∈ C, (93)

which is usually called Fourier–Wigner distribution associated with the rank-one operator φ̂ψ .
It is a peculiar fact that the Fourier–Wigner distribution can be cast in a form similar to the
standard Wigner distribution (compare with formula (85))

Vφ̂ψ (q, p) = 1

2π

∫
R

e
i
2 qp e−ipyψ(y − q)∗φ(y) dy

= 1

2π

∫
R

e−ipxψ
(
x − q

2

)∗
φ

(
x +

q

2

)
dx. (94)

It is clear that, since Fsp is unitary, the function Vφ̂ψ = FspQφ̂ψ satisfies a relation completely
analogous to the Moyal identity (87).

As is well known, the map R × R � (q, p) �→ U(q, p) that appears in the definition of
the Wigner and Fourier–Wigner distributions is an irreducible projective representation of the
group R × R in L2(R); with a slight abuse of terminology, we will call it Weyl system5. The
Moyal identity (87) is a manifestation of the fact that the representation U is square integrable.
This property, whose main technical aspects will be recalled in the following section, allows
us to extend the notion of Wigner distribution defining a Wigner transform which associates
with any Hilbert–Schmidt operator in L2(R) a suitable numerical function; furthermore, as
will be shown in section 5, one can actually define a (generalized) Wigner transform for every
square integrable representation.
5 Strictly speaking, it is the pair of unitary representations (p �→ exp(ipq̂), q �→ exp(−iqp̂)) that it is customary
to call ‘Weyl system’, see [45]; however, the irreducible projective representation U has the same physical meaning
since it ‘codifies’ the canonical commutation relations (in integrated form), as shown in (89). The representation U
is strictly related to a Schrödinger representation of the Heisenberg–Weyl group, see [29].
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4. A technical interlude: square integrable representations

In this section, we will use some basic facts of the theory of topological groups and their
representations; standard references on the subject are [46, 47].

Let G be a locally compact second countable Hausdorff topological group (in short, l.c.s.c.
group). We will denote by µG and �G respectively a left Haar measure (of course uniquely
defined up to a multiplicative constant) and the modular function on G. The symbol e will
indicate the unit element in G.

Given a separable complex Hilbert space H, the symbol U(H) will denote, as in section 3,
the unitary group of H—i.e. the group of all unitary operators in H, endowed with the strong
operator topology—which is a metrizable second countable Hausdorff topological group.

We will mean by the term projective representation of a l.c.s.c. group G a Borel projective
representation of G in a separable complex Hilbert space H (see, for instance, [46], chapter
VII), namely a map of G into U(H) such that

• U is a weakly Borel map, i.e. G � g �→ 〈φ,U(g)ψ〉 ∈ C is a Borel function6, for any
couple of vectors φ,ψ ∈ H;

• U(e) = I , where I the identity operator in H;
• denoted by T the circle group, namely the group of complex numbers of modulus one,

there exists a Borel function m : G × G → T such that

U(gh) = m(g, h)U(g)U(h), ∀g, h ∈ G.

The function m, which is called the multiplier associated with U, satisfies the following
conditions:

m(g, e) = m(e, g) = 1, ∀g ∈ G, (95)

and

m(g1, g2g3)m(g2, g3) = m(g1g2, g3)m(g1, g2), ∀g1, g2, g3 ∈ G. (96)

In particular, in the case where m ≡ 1, U is a standard unitary representation; in this case,
according to a well-known result, the hypothesis that the map U is weakly Borel implies
that it is, actually, strongly continuous. The notion of irreducibility is defined for projective
representations as for unitary representations.

Let Ũ : G → U(H̃) be a projective representation of G in a (separable complex) Hilbert
space H̃. We say that Ũ is physically equivalent to U if there exist a Borel function β : G → T

and a unitary or antiunitary operator W : H → H̃ such that

Ũ (g) = β(g)WU(g)W ∗, ∀g ∈ G. (97)

Note that the notion of physical equivalence is coherent with Wigner’s theorem on symmetry
actions. It is clear that a projective representation, physically equivalent to an irreducible
projective representation, is irreducible too.

Let U be an irreducible projective representation of the l.c.s.c. group G in the Hilbert space
H. Then, given two vectors ψ, φ ∈ H, we define the function (usually called ‘coefficient’)

cU
ψ,φ : G � g �→ 〈U(g)ψ, φ〉 ∈ C, (98)

and we consider the set (of ‘admissible vectors for U’)

A(U) := {
ψ ∈ H

∣∣ ∃φ ∈ H : φ �= 0, cU
ψ,φ ∈ L2(G)

}
, (99)

6 The terms Borel function (or map) and Borel measure will be always used with reference to the natural Borel
structures on the topological spaces involved, namely to the smallest σ -algebras containing all open subsets.
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where L2(G) ≡ L2(G,µG; C). The representation U is said to be square integrable if
A(U) �= {0}. Square integrable projective representations are characterized by the following
result—see [22]—which is a generalization of a classical theorem of Duflo and Moore [19]
concerning unitary representations:

Theorem 1. Let the projective representation U : G → U(H) be square integrable. Then,
the set A(U) is a dense linear span7 in H, stable under the action of U, and, for any couple of
vectors φ ∈ H and ψ ∈ A(U), the coefficient cU

ψ,φ is square integrable with respect to the left
Haar measure µG on G. Moreover, there exists a unique positive selfadjoint injective linear
operator D̂U in H—which we will call the ‘Duflo–Moore operator associated with U’—such
that A(U) = Dom(D̂U ) and the following ‘orthogonality relations’ hold:∫

G

cψ1,φ1(g)∗cψ2,φ2(g) dµG(g) =
∫

G

〈φ1, U(g)ψ1〉〈U(g)ψ2, φ2〉 dµG(g)

= 〈φ1, φ2〉〈D̂Uψ2, D̂Uψ1〉, (100)

for all φ1, φ2 ∈ H and all ψ1, ψ2 ∈ A(U). The Duflo–Moore operator D̂U is semi-invariant,

with respect to U, with weight �
1/2
G , i.e.

U(g)D̂U = �G(g)
1
2 D̂UU(g), ∀g ∈ G; (101)

it is bounded if and only if G is unimodular (i.e. �G ≡ 1) and, in such a case, it is a multiple
of the identity.

Remark 4. If U is square integrable, the associated Duflo–Moore operator D̂U , being injective
and selfadjoint, has a selfadjoint densely defined inverse. Duflo and Moore call (for historical
reasons) the square of D̂−1

U the formal degree of the representation U. Note that the operator D̂U

is linked to the normalization of the Haar measure µG. Indeed, if µG is rescaled by a positive
constant, then D̂U is rescaled by the square root of the same constant. Keeping this fact in
mind, we will say that D̂U is normalized according to µG. On the other hand, if a normalization
of the left Haar measure on G is not fixed, D̂U is defined up to a positive factor and we will
call a specific choice a normalization of the Duflo–Moore operator. In particular, if G is
unimodular, then D̂U = I is a normalization of the Duflo–Moore operator; the corresponding
Haar measure will be said to be normalized in agreement with the representation U. Moreover,
observe that, according to relation (101), the dense linear span Dom

(
D̂−1

U

) = Ran(D̂U ) (like
the linear span A(U) = Dom(D̂U )) is stable under the action of U and

U(g)∗D̂−1
U = �G(g)

1
2 D̂−1

U U(g)∗, ∀g ∈ G. (102)

Finally, we note that the orthogonality relations (100) can also be written replacing the positive
selfadjoint operator D̂U with a closed injective operator K̂U which is only required to be
selfadjoint. Such an operator K̂U is not unique (e.g., trivially, one can set K̂U = −D̂U ), and
it is characterized by a polar decomposition of the form K̂U = V D̂U , where V is a suitable
unitary operator in H. A selfadjoint operator satisfying the orthogonality relations will be
called a variant of the Duflo–Moore operator.

Let us list a few basic facts about square integrable representations:

(i) The square-integrability of a representation extends to all its physical equivalence class.
Thus, we can say consistently that a certain physical equivalence class of representations
is square integrable.

7 Throughout the paper, we call a nonempty subset of a vector space V ‘linear span’ if it is a linear space itself (with
respect to the operations of V), with no extra requirement of closedness with respect to any topology on V; we prefer
to use the term ‘(vector) subspace’ of V for indicating a closed linear span (with respect to a given topology on V).
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(ii) In the case where the l.c.s.c. group G is compact (hence, unimodular), every irreducible
projective representation of G is square integrable (since, in this case, the Haar measure
on G is finite) and, in the case of a unitary representation, theorem 1 coincides with the
celebrated Peter–Weyl theorem.

(iii) If the representation U of G is square integrable, then the orthogonality relations (100)
imply that, for any nonzero admissible vector ψ ∈ A(U), one can define the linear
operator

Wψ : H � φ �→ ‖D̂Uψ‖−1cU
ψ,φ ∈ L2(G) (103)

—sometimes called (generalized) wavelet transform generated by U, with analyzing or
fiducial vector ψ—which is an isometry. Note that Wψ is the frame transform associated

with the normalized tight frame {‖D̂Uψ‖−1U(g)ψ}g∈G in H based on (G,µG). For the
adjoint W∗

ψ : L2(G) → H of the isometry Wψ the following formula holds (compare
with the reconstruction formula (14)):

W∗
ψf = ‖D̂Uψ‖−1

∫
G

f (g)(U(g)ψ) dµG(g), ∀f ∈ L2(G). (104)

The ordinary wavelet transform arises in the special case where G is the one-dimensional
affine group R � R+

∗ (see [20]).
(iv) The isometry Wψ intertwines the square integrable representation U with the left-regular

m-representation Rm of G in L2(G), see [22], which is the projective representation (with
multiplier m) defined by

(Rm(g)f )(g′) = →
m (g, g′)f (g−1g′), g, g′ ∈ G, (105)

→
m (g, g′) := m(g, g−1)∗m(g−1, g′), (106)

for every f ∈ L2(G); namely

WψU(g) = Rm(g)Wψ, ∀g ∈ G. (107)

Hence, U is (unitarily) equivalent to a subrepresentation of Rm. Note that, for m ≡ 1,

R ≡ Rm is the standard left regular representation of G.
(v) Since Wψ is a frame transform, the range Rψ ≡ Ran(Wψ)—which, by Schwarz

inequality, consists of (equivalence classes of µG-almost everywhere) bounded square
integrable functions—is a r.k.H.s. (embedded in L2(G); see remark 1), and the reproducing
kernel is given explicitly by

	U
ψ (g, g′) := ‖D̂Uψ‖−2〈U(g)ψ,U(g′)ψ〉, g, g′ ∈ G. (108)

Namely, for every function f in Rψ , we have

f (g) =
∫

G

	U
ψ (g, g′)f (g′) dµG(g′), for µG − a.a. g ∈ G. (109)

(vi) The wavelet transform Wψ intertwines a bounded operator Â in H with an integral
operator in L2(G)

WψÂ = ÂψWψ, Â ∈ B(H), (110)

where

(Âψf )(g) :=
∫

G

	U
ψ (Â; g, g′)f (g′) dµG(g′), f ∈ L2(G), (111)

	U
ψ (Â; g, g′) := ‖D̂Uψ‖−2〈U(g)ψ, ÂU(g′)ψ〉, g, g′ ∈ G; (112)
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in particular: 	U
ψ (I ; g, g′) = 	U

ψ (g, g′). Since

	U
ψ (Â; g, ·) = ‖D̂Uψ‖−2〈U(·)ψ, Â∗U(g)ψ〉∗ (113)

and the function ‖D̂Uψ‖−2〈U(·)ψ, Â∗U(g)ψ〉 belongs to Rψ , denoting by R⊥
ψ the

orthogonal complement in L2(G) of Rψ , the operator Âψ satisfies

Âψf = 0, ∀f ∈ R⊥
ψ ; (114)

therefore, we have (compare with relation (19))

Âψ = WψÂW∗
ψ. (115)

Moreover, relation (110) implies that Â = W∗
ψÂψWψ ; hence, by means of formulae

(104) and (111), we get the following (weak integral) formula:

Â = ‖D̂Uψ‖−2
∫

G

dµG(g)

∫
G

dµG(g′)	U
ψ (Â; g, g′)|U(g)ψ〉〈U(g′)ψ |. (116)

(vii) Since for the Fourier–Wigner transform a relation analogous to the Moyal identity holds
true, namely,∫

R×R

V
̂φ1ψ1

(q, p)∗V
̂φ2ψ2

(q, p) dq dp =
∫

R×R

〈φ1, U(q, p)ψ1〉〈U(q, p)ψ2, φ2〉dq dp

(2π)2

= 1

2π
〈φ1, φ2〉〈ψ2, ψ1〉, (117)

we conclude that the projective representation U : R × R � (q, p) �→ exp(i(pq̂ −
qp̂)) ∈ U(L2(R)) is square integrable and, fixing (2π)−1 dq dp as the Haar measure
on R × R, we have that D̂U = I . Therefore, the Haar measure (2π)−1 dq dp is
normalized in agreement with U. If ψ ∈ L2(R) is the ground state of the quantum
harmonic oscillator, then {U(q, p)ψ}q,p∈R is the family of standard coherent states
[23, 48], which is a normalized tight frame in L2(R) based on (R × R, (2π)−1 dq dp).

As a consequence of the ‘trace formula for frames’—see proposition 1—we have the
following further remarkable property of square integrable representations:

Proposition 6 (the ‘first trace form. for sq. int. reps.’). Let U : G → U(H) be a
square integrable projective representation and D̂U the associated Duflo–Moore operator
(normalized according to the left Haar measure µG). Then, for any couple of admissible
vectors ψ, φ ∈ A(U) and any trace class operator Â in H, the following formula holds:

tr(Â)〈D̂Uψ, D̂Uφ〉 =
∫

G

〈U(g)ψ, ÂU(g)φ〉 dµG(g). (118)

Proof. We will assume that ψ �= 0 �= φ, otherwise the statement is trivial; we will further
assume, for the moment, that φ = ψ ∈ A(U). Then, as already observed, the set of vectors
{‖D̂Uψ‖−1U(g)ψ}g∈G is a normalized tight frame in H based on (G,µG), and formula
(118)—for every Â ∈ B1(H) and with φ = ψ—follows from formula (21) applied to this
frame.

In order to extend the proof to the case where φ �= ψ , we can use the result just obtained
and a standard ‘polarization argument’. The proof is complete. �

One can furthermore prove that, in the case where the l.c.s.c. group G is unimodular, the
first trace formula for square integrable representations is a particular case of the following
result:
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Proposition 7 (the ‘second trace form. for sq. int. reps.’). Let U : G → U(H) be a square
integrable projective representation of a unimodular l.c.s.c. group G and let D̂U = dUI,

dU > 0, be the associated Duflo–Moore operator (normalized according to the Haar measure
µG). Then, for any couple of trace class operators Â, T̂ in H, the following formula holds:

tr(Â) tr(T̂ ) = d−2
U

∫
G

tr(U(g)T̂ U(g)∗Â) dµG(g). (119)

Proof. As in the proof of proposition 1, we can exploit the fact that every trace class operator
can be expressed as a linear combination of four positive trace class operators, and we can
restrict the proof of relation (119)—with no loss of generality—to the case where Â, T̂ are
generic nonzero positive trace class operator in H. Then, let us consider the canonical
decomposition of T̂ as a nonzero (positive) compact operator

T̂ =
∑
n∈N

τn|ψn〉〈ψn|, ψn, φn ∈ H, (120)

where N is a finite or countably infinite index set, {ψn}n∈N is an orthonormal system and
{τn}n∈N is a set of strictly positive numbers—the nonzero singular values of T̂ (which, being
T̂ positive, coincide with the nonzero eigenvalues of T̂ )—such that

∑
n∈N τn = tr(T̂ ); the

sum (120) converges with respect to the trace norm. Observe that the map

B1(H) � Ŝ �→ tr(U(g)ŜU(g)∗Â) = tr(ŜU(g)∗ÂU(g)) ∈ C (121)

is a bounded linear functional; hence

tr(U(g)T̂ U(g)∗Â) =
∑
n∈N

τn tr(U(g)|ψn〉〈ψn|U(g)∗Â). (122)

Therefore, we have∫
G

tr(U(g)T̂ U(g)∗Â) dµG(g) =
∫

G

∑
n∈N

τn〈U(g)ψn, ÂU(g)ψn〉 dµG(g)

=
∑
n∈N

τn

∫
G

〈U(g)ψn, ÂU(g)ψn〉 dµG(g)

= d2
U tr(Â) tr(T̂ ), (123)

where the permutation of the (possibly infinite) sum with the integral is allowed by the
positivity of the integrand functions and we have used the first trace formula (118). �

In the following section, it will be shown that the notion of square integrable representation
allows us to give a rigorous definition of the (standard) Wigner transform, and to generalize
this definition in a straightforward way: with every square integrable projective representation
one can associate a suitable isometry, i.e. a (generalized) Wigner transform.

5. Wigner transforms associated with square integrable representations and the
Wigner distribution

The (generalized) wavelet transform defined in the previous section is not the only remarkable
linear map that one can construct, in a natural way, by means of a square integrable
representation. Indeed, following [12], we will show that—given a square integrable projective
representation U : G → U(H) (with miltiplier m)—with every Hilbert–Schmidt operator
Â ∈ B2(H) one can suitably associate a function G � g �→ (SUÂ)(g) ∈ C contained
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in L2(G) ≡ L2(G,µG; C). Denoting by D̂U , as in section 4, the Duflo–Moore operator
associated with U (normalized according to a left Haar measure µG on G), formally we set

(SUÂ)(g) := tr
(
U(g)∗ÂD̂−1

U

)
. (124)

Since the operator U(g)∗ÂD̂−1
U (or, possibly, its closure) is not, in general, a trace class

operator, definition (124) is meaningless unless we provide a rigorous interpretation. To this
aim, we will exploit the fact that finite-rank operators form a dense linear span FR(H) in
B2(H). Precisely, consider those rank one operators in H that are of the type

φ̂ψ = |φ〉〈ψ |, φ ∈ H, ψ ∈ Dom
(
D̂−1

U

)
. (125)

The linear span generated by the operators of this form, namely the set

FR(H;U) := {
F̂ ∈ FR(H) : Ran(F̂ ∗) ⊂ Dom

(
D̂−1

U

)}
, (126)

is dense in FR(H); hence, in B2(H): FR(H;U) = B2(H). Observe, moreover, that if we set

(SU φ̂ψ)(g) := tr(U(g)∗|φ〉〈D̂−1
U ψ |) = 〈U(g)D̂−1

U ψ, φ〉, ∀ φ̂ψ ∈ FR(H;U), (127)

then, by virtue of the orthogonality relations (100), for any φ̂1ψ1, φ̂2ψ2 ∈ FR(H;U) we have∫
G

(SU φ̂1ψ1)(g)∗(SU φ̂2ψ2)(g) dµG(g) =
∫

G

〈φ1, U(g)D̂−1
U ψ1〉〈U(g)D̂−1

U ψ2, φ2〉 dµG(g)

= 〈φ1, φ2〉〈ψ2, ψ1〉 = 〈φ̂1ψ1, φ̂2ψ2〉B2(H). (128)

Therefore, extending the map SU to all FR(H;U) by linearity, and then to the whole
Hilbert space B2(H) by continuity, we obtain an isometry SU : B2(H) → L2(G) called
the (generalized) Wigner transform generated by U. As the reader may check, if the group G is
unimodular (⇒D̂U = dUI , with dU > 0), then for every trace class operator ρ̂ ∈ B1(H)—in
particular, for every density operator in H—we have simply

(SU ρ̂)(g) = d−1
U tr(U(g)∗ρ̂). (129)

Let us now investigate the intertwining property of the isometry SU with respect
to the natural action of the group G in B2(H). Precisely, let us consider the map
U ∨ U : G → U(B2(H)) defined by

U ∨ U(g)Â := U(g)ÂU(g)∗, ∀g ∈ G, Â ∈ B2(H). (130)

The map U ∨ U is a (strongly continuous) unitary representation—even if, in general, the
representation U has only been assumed to be projective—which can be regarded as the
standard action of the ‘symmetry group’ G on the quantum ‘observables’ (or on the ‘states’).
Next, let us consider the map Tm : G → U(L2(G)) defined by

(Tm(g)f )(g′) = �G(g)
1
2
↔
m(g, g′)f (g−1g′g), (131)

where the function
↔
m : G × G → T has the following expression:

↔
m(g, g′) := m(g, g−1g′)∗m(g−1g′, g). (132)

As the reader may check by means of a direct calculation involving multipliers, the map Tm is a
unitary representation; the presence of the square root of the modular function �G in formula
(131) takes into account the right action of G on itself. Note that, for m ≡ 1, it coincides with
the restriction to the ‘diagonal subgroup’ of the two-sided regular representation of the direct
product group G × G; see [47, 49]. As the reader may check using relation (102), the Wigner
transform SU intertwines the representations U ∨ U and Tm

SUU ∨ U(g) = Tm(g)SU , ∀g ∈ G. (133)
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Since the generalized Wigner transform SU is an isometry, the adjoint map S∗
U :

L2(G) → B2(H) is a partial isometry such that

S∗
USU = I, SUS∗

U = P̂RU
, (134)

where P̂RU
is the orthogonal projection onto the subspace RU ≡ Ran(SU) = Ker(S∗

U)

of L2(G). Thus, the partial isometry S∗
U is the pseudo-inverse of SU and we will call it

(generalized) Weyl map associated with the representation U. It is remarkable that the Weyl
map S∗

U admits the following weak integral expression (see [12]):

S∗
Uf =

∫
G

f (g)U(g)D̂−1
U dµG(g), ∀f ∈ L2(G). (135)

Observe that, in the case where the group G is unimodular, with the Haar measure µG

normalized in agreement with U, we have simply

S∗
Uf =

∫
G

f (g)U(g) dµG(g), ∀f ∈ L2(G). (136)

Let us now focus on the case where G = R × R and U is the square integrable projective
representation

U : R × R � (q, p) �→ exp(i(pq̂ − qp̂)) ∈ U(L2(R)). (137)

We recall from section 4 that (2π)−1 dq dp is the Haar measure on R × R normalized in
agreement with U. Then, in this case, the generalized Wigner transform SU is the isometry
from B2(L2(R)) into L2(R × R) ≡ L2(R × R, (2π)−1 dq dp; C) determined by

(SU ρ̂)(q, p) = tr(U(q, p)∗ρ̂), ∀ ρ̂ ∈ B1(L
2(R)). (138)

For a pure state ψ̂ ≡ |ψ〉〈ψ | ∈ B2(L2(R)), ‖ψ‖ = 1, the function SUψ̂ coincides—up to
an irrelevant normalization factor—with the Fourier–Wigner distribution associated with ψ̂

(compare with definition (93)). The multiplier m : (R × R) × (R × R) → T associated with
U is given by

m(q, p; q ′, p′) = exp
( i

2
(qp′ − pq ′)

)
. (139)

Hence, for the function
↔
m we find, in this case, the following expression:

↔
m(q, p; q ′, p′) = m(q, p; q ′ − q, p′ − p)∗m(q ′ − q, p′ − p; q, p) = exp(−i(qp′ − pq ′)).

(140)

Recalling formula (131), we conclude that the generalized Wigner transform SU intertwines
the unitary representation U ∨ U : R × R → U(B2(L2(R))) with the representation
Tm : R × R → U(L2(R × R)) defined by

(Tm(q, p)f )(q ′, p′) = e−i(qp′−pq ′)f (q ′, p′), ∀f ∈ L2(R × R). (141)

The standard Wigner transform—we will denote it by T—is the isometry obtained composing
the isometry SU determined by (138) with the symplectic Fourier transform

T := FspSU : B2(L
2(R)) → L2(R × R). (142)

In particular, for a pure state ψ̂ ∈ B2(L2(R)) the function Tψ̂ coincides, up to an irrelevant
normalization factor, with the Wigner distribution associated with ψ̂ (compare with formula
(90))

(Tψ̂)(q, p) = 2πQψ̂ (q, p). (143)
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It is clear that the isometry T intertwines the representation U ∨ U with the unitary
representation T : R × R → U(L2(R × R)) defined by

T (q, p) = FspTm(q, p)Fsp, ∀ (q, p) ∈ R × R; (144)

as the reader may easily check, explicitly, we have

(T (q, p)f )(q ′, p′) = f (q ′ − q, p′ − p), ∀f ∈ L2(R × R). (145)

Note that this result is consistent with relations (83) and (84). It is also a remarkable result—
see [50]—that Ran(SU) = Ran(T) = L2(R × R). Therefore, the standard Wigner transform
T—and its adjoint T∗, the standard Weyl map—are both unitary operators.

Note that, according to the definition of the map SU , the Wigner transform associated
with a square integrable representation is not—in general—a frame transform. For instance,
in the case where U is the Weyl system (137), it is not. This is coherent with the fact that, in
the mentioned case, Ran(SU) = L2(R × R) and hence Ran(SU) is not a r.k.H.s. as it should
be if SU were a frame transform. For the same reason, the standard Wigner transform T is
not a frame transform. It is then natural to address the following problem: given a square
integrable projective representation U, is it possible to associate with U, in a straightforward
way, a frame transform in B2(H)? We will give an (affirmative) answer to this question in the
subsequent section.

6. Frames in Hilbert–Schmidt spaces from square integrable representations

In this section, we will show that it is possible to obtain from a square integrable
representation—in a natural way—frame transforms having as domain the space of Hilbert–
Schmidt operators in the Hilbert space where the representation acts. In the following, we
will assume that G is a l.c.s.c. group and U : G → U(H) a square integrable projective
representation of G in the Hilbert space H. For the sake of simplicity, we will suppose that the
group G is unimodular, but the results that we are going to prove actually extend to the general
case (see remark 10 below). We will denote by µG the Haar measure on G normalized in
agreement with the representation U (see remark 4). Now, for any couple of Hilbert–Schmidt
operators Â, T̂ ∈ B2(H), we can define the function

A : G × G � (g1, g2) �→ 〈T̂ (g1, g2), Â〉B2(H) ∈ C, (146)

where

T̂ (g1, g2) := U(g1)T̂ U(g2)
∗, g1, g2 ∈ G. (147)

At this point, we have the following result:

Theorem 2. With the previous notations and assumptions, for any Â, T̂ ∈ B2(H), the map

〈T̂ (·, ·), Â〉B2(H) : G × G � (g1, g2) �→ 〈T̂ (g1, g2), Â〉B2(H) ∈ C (148)

is a Borel function contained in L2(G × G) ≡ L2(G × G,µG ⊗ µG; C), and the linear
application

DT̂ : B2(H) � Â �→ A = 〈T̂ (·, ·), Â〉B2(H) ∈ L2(G × G) (149)

—for T̂ nonzero and normalized (i.e. ‖T̂ ‖B2(H) = 1)—is an isometry (the ‘dequantization map’
associated with the representation U, with ‘analyzing operator’ T̂ ); namely, for T̂ normalized,
the family of operators {T̂ (g1, g2) : (g1, g2) ∈ G × G} is a normalized tight frame in B2(H),
based on (G × G,µG ⊗ µG). Moreover, for any Â, B̂, Ŝ, T̂ ∈ B2(H), the following relation
holds:∫

G×G

(DT̂ Â)(g1, g2)
∗(DŜ B̂)(g1, g2)dµG ⊗ µG(g1, g2) = 〈Â, B̂〉B2(H)〈Ŝ, T̂ 〉B2(H). (150)
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Proof. Let T̂ be a nonzero operator in B2(H). As a Hilbert–Schmidt operator, T̂ will admit a
canonical decomposition of the form

T̂ =
∑
n∈N

τn|φn〉〈ψn|, ψn, φn ∈ H, (151)

where N is a finite or countably infinite index set, {ψn}n∈N , {φn}n∈N are orthonormal systems
and {τn}n∈N is a set of strictly positive numbers (the nonzero singular values of T̂ ) such that∑

n∈N τ 2
n = ‖T̂ ‖2

B2(H); the sum (151) converges with respect to the Hilbert–Schmidt norm.
The fact that the representation U is a weakly Borel map implies that the function

〈T̂ (·, ·), Â〉B2(H)—for any Â, T̂ ∈ B2(H)—is Borel; namely, that the application G × G �
(g1, g2) �→ T̂ (g1, g2) ∈ B2(H) is weakly Borel. In fact, by means of the canonical
decompositions of the operators Â and T̂ , one can express the function 〈T̂ (·, ·), Â〉B2(H)

as a finite—or countably infinite and pointwise converging—sum of Borel functions; we leave
the details to the reader (recall that, given Borel functions fj : G → C, j = 1, 2, the function
f : G × G � (g1, g2) �→ f1(g1)f2(g2) ∈ C is Borel too).

Assume, now, that T̂ �= 0 and ‖T̂ ‖B2(H) = 1, and let Â be an arbitrary operator in B2(H).
Consider the associated Borel complex-valued function A ≡ 〈T̂ (·, ·), Â〉B2(H) on G × G. We
will prove that this function belongs to L2(G×G) and, simultaneously, that the dequantization
map (149) is an isometry. To this aim, it will be convenient to assume for the moment that T̂

is a finite-rank operator; this is equivalent to suppose that the index set N is finite. Then, by
Tonelli’s theorem and the (finite) canonical decomposition of T̂ , we have∫

G×G

|A(g1, g2)|2 dµG ⊗ µG(g1, g2) =
∫

G

(∫
G

|A(g1, g2)|2 dµG(g1)

)
dµG(g2)

=
∑

n,k∈N
τnτk

∫
G

( ∫
G

〈Â, (|φn(g1)〉〈ψn(g2)|)〉B2(H)

× 〈(|φk(g1)〉〈ψk(g2)|), Â〉B2(H)dµG(g1)

)
dµG(g2),

(152)

where, for the sake of notational conciseness, we have set

φn(g) := U(g)φn, ψn(g) = U(g)ψn, ∀g ∈ G, ∀ n ∈ N . (153)

Next, observe that

〈Â, (|φn(g1)〉〈ψn(g2)|)〉B2(H) = tr(|ψn(g2)〉〈φn(g1)|Â)∗ = 〈Âψn(g2), φn(g1)〉; (154)

hence, from relations (152) and (154), we obtain∫
G×G

|A(g1, g2)|2 dµG ⊗ µG(g1, g2) =
∑

n,k∈N
τnτk

∫
G

( ∫
G

〈Âψn(g2), φn(g1)〉

× 〈φk(g1), Âψk(g2)〉 dµG(g1)

)
dµG(g2)

=
∑
n∈N

τ 2
n

∫
G

〈ÂU(g2)ψn, ÂU(g2)ψn〉 dµG(g2), (155)

where we have used the orthogonality relations for the square integrable representation U (G
unimodular, µG normalized in agreement with U). At this point, using the trace formula (118),
we get∫

G×G

|A(g1, g2)|2 dµG ⊗ µG(g1, g2) = tr(Â∗Â)
∑
n∈N

τ 2
n = ‖Â‖2

B2(H)‖T̂ ‖2
B2(H), (156)

with ‖T̂ ‖2
B2(H) = 1. Thus, in the case where the index set N is finite, the proof is complete.
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Suppose now that dim(H) = ∞ and N = N. In this case, we can consider a sequence
{T̂ N}N∈N ⊂ B2(H) of finite-rank operators converging to T̂ : limN→∞ ‖T̂ − T̂ N‖B2(H) = 0; in
particular, we can consider the sequence of finite truncations of the canonical decomposition
of T̂ , i.e. T̂ N := ∑N

n=1 τn|ψn〉〈φn|. Then, setting T̂ N(g1, g2) := U(g1)T̂ NU(g2)
∗, we get

lim
N→∞

‖T̂ (g1, g2) − T̂ N(g1, g2)‖B2(H) = lim
N→∞

‖T̂ − T̂ N‖B2(H) = 0, (157)

and

A(g1, g2) := 〈T̂ (g1, g2), Â〉B2(H) = lim
N→∞

〈T̂ N(g1, g2), Â〉B2(H), ∀g1, g2 ∈ G. (158)

Next, observe that for every N ∈ N the function AN := 〈T̂ N(·, ·), Â〉B2(H) : G × G → C

belongs to L2(G × G), and {AN}N∈N is a Cauchy sequence in L2(G × G). Indeed—according
to the first segment of the proof—one finds out that, for any N, N′ ∈ N,∫

G×G

|AN′(g1, g2) − AN(g1, g2)|2 dµG ⊗ µG(g1, g2) = ‖〈T̂ N,N′(·, ·), Â〉B2(H)‖2
L2(G×G)

= ‖Â‖2
B2(H)‖T̂ N′ − T̂ N‖2

B2(H), (159)

where we have set T̂ N,N′(g1, g2) ≡ U(g1)(T̂ N′ − T̂ N)U(g2)
∗, and we have exploited the fact

that T̂ N′ − T̂ N is a finite-rank operator. Therefore, the function A : G × G → C is the
pointwise limit of a Cauchy sequence of functions in L2(G × G), so that—according to a
well-known result—it belongs to L2(G × G) too and limN→∞ ‖A − AN‖L2(G×G) = 0. Hence,
considering that ‖AN‖L2(G×G) = ‖Â‖B2(H)‖T̂ N‖B2(H), we have

‖A‖L2(G×G) = lim
N→∞

‖AN‖L2(G×G)

= ‖Â‖B2(H) lim
N→∞

‖T̂ N‖B2(H) = ‖Â‖B2(H)‖T̂ ‖B2(H), (160)

with ‖T̂ ‖B2(H) = 1. Thus, the first part of the proof is complete.
We will now prove relation (150). This second part of the proof goes along lines similar

to the ones already traced in the first part, so we will be rather sketchy.
Let Â, B̂, Ŝ, T̂ be operators in B2(H), with Ŝ �= 0 �= T̂ (otherwise relation (150) is

trivial), and consider the canonical decompositions

Ŝ =
∑
m∈M

σm|ηm〉〈χm|, T̂ =
∑
n∈N

τn|φn〉〈ψn|, ηm, χm,ψn, φn ∈ H, (161)

where M,N are finite or countably infinite index sets, {ηm}n∈M, {χm}n∈M, {ψn}n∈N , {φn}n∈N
orthonormal systems, {σm}m∈M and {τn}n∈N sets of strictly positive numbers such that∑

m∈M σ 2
m = ‖Ŝ‖2

B2(H) and
∑

n∈N τ 2
n = ‖T̂ ‖2

B2(H), and we have

〈Ŝ, T̂ 〉B2(H) =
∑
m∈M

∑
n∈N

σmτn〈ηm, φn〉〈ψn, χm〉. (162)

The sums (161) converge with respect to the Hilbert–Schmidt norm.
Suppose first that the index sets M,N are both finite. For notational conciseness, we

define the function � : G × G → C,�(g1, g2) := (DT̂ Â)(g1, g2)
∗(DŜ B̂)(g1, g2), and we

set

ηm(g) := U(g)ηm, χm(g) := U(g)χm, φn(g) := U(g)φn, ψn(g) = U(g)ψn. (163)
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Then, since the function � belongs to L1(G × G) (according to the first part of the proof), we
can apply Fubini’s theorem thus getting∫

G×G

�(g1, g2) dµG ⊗ µG(g1, g2) =
∑
m∈M

∑
n∈N

σmτn

∫
G

(∫
G

〈Âψn(g2), φn(g1)〉

× 〈ηm(g1), B̂χm(g2)〉 dµG(g1)

)
dµG(g2)

=
∑
m∈M

∑
n∈N

σmτn〈ηm, φn〉

×
∫

G

〈ÂU(g2)ψn, B̂U(g2)χm〉 dµG(g2), (164)

where we have used the orthogonality relations for U. Next, use the trace formula (118)∫
G×G

�(g1, g2) dµG ⊗ µG(g1, g2) =
∑
m∈M

∑
n∈N

σmτn〈ηm, φn〉

×
∫

G

〈U(g2)ψn, Â
∗B̂U(g2)χm〉 dµG(g2)

=
∑
m∈M

∑
n∈N

σmτn〈ηm, φn〉〈ψn, χm〉 tr(Â∗B̂)

= 〈Â, B̂〉B2(H)〈Ŝ, T̂ 〉B2(H). (165)

Suppose now that dim(H) = ∞, and that M = N and/or N = N. Then, one can
adopt a reasoning similar to the one used in the second half of the first part of the proof:
consider sequences {ŜM}M∈N and/or {T̂ N}N∈N of finite-rank operators—converging to Ŝ and/or
to T̂ , respectively—and exploit the continuity (in both arguments) of the scalar products in
L2(G × G) and B2(H), for proving relation (150) also in this case.

The proof of the theorem is complete. �

Remark 5. In order to prove theorem 2, we could have shown that the map U: G × G →
U(B2(H)), defined by

U(g1, g2)T̂ := U(g1)T̂ U(g2)
∗ =: T̂ (g1, g2), g1, g2 ∈ G, T̂ ∈ B2(H), (166)

is an irreducible projective representation of the (unimodular) direct product group G × G,
and that, moreover, it is square integrable. Then, formula (150) can be regarded as the
‘orthogonality relations’ of the square integrable representation U. The advantage of the
above proof is that of ‘explicitly illustrating’ what happens for finite-rank operators. In the
general case where G is not assumed to be unimodular—see remark 10 below—this kind of
proof allows us to provide an explicit expression for (a variant of) the Duflo–Moore operator
associated with the representation U in terms of the Duflo–Moore operator associated with U.

Remark 6. Assume that the analyzing operator T̂ ∈ B2(H) is a nonzero finite-rank
operator (‖T̂ ‖B2(H) = 1). Then, arguing as in the proof of theorem 2, one shows that
for every trace class operator Â ∈ B1(H) and every bounded operator B̂ ∈ B(H)—setting:
B(g1, g2) := tr(T̂ (g1, g2)

∗B̂)—the function

G � g2 �→ (
DT̂ Â

)
(g1, g2)

∗B(g1, g2) ∈ C, ∀g1 ∈ G, (167)

is contained in L1(G), as well as the function g1 �→ ∫
G

(
DT̂ Â

)
(g1, g2)

∗B(g1, g2) dµG(g2),
and the following formula holds:∫

G

dµG(g1)

∫
G

dµG(g2)(DT̂ Â)(g1, g2)
∗B(g1, g2) dµG ⊗ µG(g1, g2) = tr(Â∗B̂), (168)
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where one can interchange the order of the integrals. Furthermore—taking into account the
fact that, for any φ, η ∈ H, 〈φ, T̂ (g1, g2)η〉 = (DT̂ |φ〉〈η|)(g1, g2)

∗—the following weak
integral reconstruction formula holds:

B̂ =
∫

G

dµG(g1)

∫
G

dµG(g2)B(g1, g2)T̂ (g1, g2); (169)

in particular, for T̂ = |ψ〉〈ψ |, ‖ψ‖ = 1, we re-obtain relation (116).

Let us now investigate the intertwining property of the isometry DT̂ with respect to
the natural action of the group G in B2(H). Precisely, let us consider the representation
U ∨ U : G → U(B2(H)) defined in section 5; see formula (130). As already observed,
U ∨ U is a unitary representation, even in the case where the representation U is genuinely
projective. Consider, now, the map LM : G → U(L2(G × G)) defined by

(LM(g)f )(g1, g2) := M(g; g1, g2)f (g−1g1, g
−1g2), (170)

where the function M : G × G × G → T is given by

M(g; g1, g2) := m(g−1, g1)m(g
−1, g2)

∗, (171)

with m denoting the multiplier of U. The map LM is a unitary representation too, as the reader
may verify by checking that the following relation holds:

M(gg′; g1, g2) = M(g; g1, g2)M(g
′; g−1g1, g

−1g2). (172)

It is clear that the unitary representation LM is weakly Borel; hence, according to a well-known
result, it is strongly continuous. Between the representations U ∨ U and LM there is a precise
relation: U ∨ U is unitarily equivalent to a sub-representation of LM; indeed, we have:

Proposition 8. With the previous notations and assumptions, for every normalized Hilbert–
Schmidt operator T̂ ∈ B2(H), the isometry DT̂ intertwines the unitary representation
U ∨ U : G → U(B2(H)) with the unitary representation LM : G → U(L2(G × G)); namely:

DT̂ U ∨ U(g) = LM(g)DT̂ , ∀g ∈ G. (173)

Proof. Let Â an arbitrary operator in B2(H). We want to prove that

(DT̂ (U(g)ÂU(g)∗))(g1, g2) = M(g; g1, g2)(DT̂ Â)(g−1g1, g
−1g2). (174)

In fact, the lhs of eq. (174) is equal to

〈T̂ (g1, g2), U(g)ÂU(g)∗〉B2(H) = tr(U(g2)T̂
∗U(g1)

∗U(g)ÂU(g)∗)
= tr((U(g)∗U(g2))T̂

∗(U(g)∗U(g1))
∗Â)

= tr((m(g, g−1)U(g−1)U(g2))T̂
∗

× (m(g, g−1)U(g−1)U(g1))
∗Â)

= tr((U(g−1)U(g2))T̂
∗(U(g−1)U(g1))

∗Â). (175)

Hence, we have that

〈T̂ (g1, g2), U(g)ÂU(g)∗〉B2(H) = m(g−1, g1)m(g
−1, g2)

∗ tr(U(g−1g2)T̂
∗U(g−1g1)

∗Â)

= M(g; g1, g2)〈T̂ (g−1g1, g
−1g2), Â〉B2(H). (176)

We have thus obtained the rhs of equation (174) and the proof is complete. �

We conclude this section with a few remarks.
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Remark 7. Let Ũ : G → U(H̃) be a projective representation physically equivalent to U
(hence, square integrable too)

Ũ (g) = β(g)WU(g)W ∗, ∀g ∈ G, (177)

where β: G → T is a Borel function and W :H → H̃ a unitary or antiunitary operator. The
unitary representations U ∨ U and Ũ ∨ Ũ are unitarily or antiunitarily equivalent (indeed,
the operator B2(H) � Â �→ WÂW ∗ ∈ B2(H) is unitary if W is unitary, antiunitary if W is
antiunitary). Moreover, denoting by m̃ the multiplier of Ũ and by M̃: G × G × G → T the
associated function defined as in (171), it turns out that the unitary representations LM(g) and
LM̃(g) are, accordingly, unitarily or antiunitarily equivalent. Indeed—using the fact that for
W unitary or antiunitary we have, respectively

m̃(g1, g2) = β(g1g2)

β(g1)β(g2)
m(g1, g2) or m̃(g1, g2) = β(g1g2)

β(g1)β(g2)
m(g1, g2)

∗ (178)

one can easily check the following relations:

M̃(g; g1, g2) = β(g1)
∗β(g2)β(g−1g1)β(g−1g2)

∗M(g; g1, g2), for W unitary, (179)

M̃(g; g1, g2) = β(g1)
∗β(g2)β(g−1g1)β(g−1g2)

∗M(g; g1, g2)
∗, for W antiunitary. (180)

Hence—denoting by J the standard complex conjugation in L2(G × G), i.e. the antiunitary
operator

J : L2(G × G) � f �→ f ∗ ∈ L2(G × G), J = J ∗, (181)

and by β̂ the multiplication operator in L2(G × G) by the T-valued Borel function
(g1, g2) �→ β(g1)

∗β(g2) (operator which is obviously unitary)—for every g ∈ G we have

LM̃(g) = β̂LM(g)β̂∗(W unitary), LM̃(g) = β̂JLM(g)J β̂∗(W antiunitary). (182)

This result is coherent with the fact that, denoting by D̃T̂ ′ the dequantization operator
associated with the representation Ũ , with analyzing operator T̂ ′ ∈ B2(H̃)—where T̂ ′ =
WT̂ W ∗, for some T̂ ∈ B2(H) such that ‖T̂ ‖B2(H) = 1—for every Â ∈ B2(H) we have

D̃T̂ ′(WÂW ∗) = (β̂WDT̂ )Â, (183)

with β̂W ≡ β̂, for W unitary, and β̂W ≡ β̂J , for W antiunitary. We leave the simple check of
relation (183) to the reader.

Remark 8. We stress that—excluding the trivial case where dim(H) = 1—Ran(DT̂ ) is a
proper subspace of L2(G × G). In fact, if dim(H) � 2, according to relation (150) we have

Ran(DT̂ 1
) ⊥ Ran(DT̂ 2

), for all T̂ 1, T̂ 2 ∈ B2(H) such that 〈T̂ 1, T̂ 2〉B2(H) = 0. (184)

Hence, the ranges of a couple of dequantization maps, with mutually orthogonal analyzing
operators, are mutually orthogonal subspaces of L2(G × G). Therefore, the ranges of
dequantization maps must be proper subspaces of L2(G × G).

Remark 9. With every function f ∈ L2(G × G) one can associate a function f �, contained
in L2(G × G) too, defined by

f �(g1, g2) := f (g2, g1)
∗, ∀ (g1, g2) ∈ G × G. (185)

Clearly, the antilinear application

J : L2(G × G) � f �→ f � ∈ L2(G × G) (186)
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is a complex conjugation (J = J∗ and J2 = I ). Observe that, for every Hilbert–Schmidt
operator Â ∈ B2(H), the following relation holds:

DT̂ (Â∗) = (DT̂ ∗Â)�. (187)

Indeed, we have

DT̂ (Â∗)(g1, g2) = tr(U(g2)T̂
∗U(g1)

∗Â∗) = tr(ÂU(g1)T̂ U(g2)
∗)∗

= tr(U(g1)T̂ U(g2)
∗Â)∗ = (

DT̂ ∗Â
)�

(g1, g2). (188)

Suppose that the analyzing operator T̂ ∈ B2(H) is selfadjoint. Then, the isometry DT̂

intertwines the standard complex conjugation Â �→ Â∗ inB2(H) with the complex conjugation
J in L2(G × G), i.e. DT̂ (Â∗) = (DT̂ Â)�. Therefore, taking into account the injectivity of
the map DT̂ , a function � belonging to Ran(DT̂ ) is the image of a selfadjoint operator if and
only if � = ��.

Remark 10. Up to this point, we have focused on the case where the group G is unimodular.
We stress that a suitable dequantization map can be defined even if G is not unimodular
(we denote by µG, as usual, a left Haar measure on G and by D̂U the Duflo–Moore operator
normalized according to µG), though in this case the construction is slightly more complicated.
Here we will sketch the main points of this construction; further details (and suitable examples)
will be contained in a forthcoming paper. Let us denote by FR(H) the linear span of finite-rank
operators and let us consider the set

F̆R(H;U) := {F̂ ∈ FR(H) : Ran(F̂ ), Ran(F̂ ∗) ⊂ Dom(D̂U )}. (189)

The set F̆R(H;U) is a dense linear span in B2(H), and a generic nonzero vector in F̆R(H;U) is
of the form

∑N
n=1 |ψn〉〈φn|, where {ψn}N

n=1, {φn}N
n=1 are linearly independent sets in Dom(D̂U ).

Let us introduce a linear operator K̆U , with domain F̆R(H;U), defined by

K̆U

(
N∑

n=1

|ψn〉〈φn|
)

=
N∑

n=1

|D̂Uψn〉〈D̂Uφn|. (190)

It is easy to check that, due to the selfadjointness of D̂U , K̆U is a symmetric operator. It
follows that K̆U is closable, and we denote by KU the closure of K̆U ; hence, KU is a closed,
symmetric, densely defined operator in B2(H) whose restriction to F̆R(H;U) coincides with
K̆U .
At this point, with every operator T̂ in the dense linear span Dom(KU) one can associate a
linear map DT̂ : B2(H) → L2(G × G) ≡ L2(G × G,µG ⊗ µG; C) defined by

(DT̂ Â)(g1, g2) := 〈U(g1)T̂ U(g2)
∗, Â〉B2(H), g1, g2 ∈ G, (191)

which—for T̂ nonzero and such that ‖KU T̂ ‖B2(H) = 1—is an isometry. Moreover, for any
Â, B̂ ∈ B2(H) and any Ŝ, T̂ in the dense linear span Dom(KU) ⊂ B2(H), the following
orthogonality relations hold:

〈DT̂ Â,DŜ B̂〉L2(G×G) = 〈Â, B̂〉B2(H)〈KU Ŝ,KU T̂ 〉B2(H). (192)

The proof of these statements goes along lines similar to the ones traced in the proof of
theorem 2. First one proves the statements with the operator T̂ (and Ŝ) belonging to the dense
linear span F̆R(H;U). Then, one extends the result to a generic T̂ in Dom(KU) by means of a
limit argument. This time the sequence {T̂ N}N∈N converging to T̂ should be chosen as follows.
It must be a sequence in F̆R(H;U) such that

lim
N→∞

‖T̂ − T̂ N‖B2(H) = 0 and lim
N→∞

‖KU T̂ − KU T̂ N‖B2(H) = 0 (193)
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(such a sequence exists since KU is the closure of K̆U ). One can prove that the operator
K̆U is essentially selfadjoint; hence, its closure KU is the unique selfadjoint extension of K̆U .
Thus, KU is a variant (remark 4) of the Duflo–Moore operator associated with the square
integrable projective representation U, see remark 5. Therefore, for T̂ ∈ Dom(KU) such that
‖KU T̂ ‖B2(H) = 1, the linear map DT̂ can be regarded as the generalized wavelet transform
generated by U, with analyzing vector T̂ .

In the following section, we will exploit the class of frames introduced above and the
results of section 2 for deriving suitable expressions of quantum-mechanical formulae in terms
of functions on ‘phase space’. Although most of the results hold in the general case, we will
assume, for the sake of simplicity, that the l.c.s.c. group G is unimodular.

7. Frame transforms and quantum mechanics

Since we are now equipped with a wide class of tight frames in the space B2(H) of Hilbert–
Schmidt operators in the Hilbert space H, we can exploit the results of section 2. It will be
convenient to denote by G the direct product group G × G (G unimodular), by g ≡ (g1, g2)

a typical element of G, by
�
g the ‘diagonal element’ (g, g) of G and by µG the Haar measure

µG ⊗ µG on G (which is, obviously, a unimodular l.c.s.c. group). Then, according to
theorem 2, for every nonzero Hilbert–Schmidt operator T̂ ∈ B2(H) such that ‖T̂ ‖B2(H) = 1
(µG is normalized in agreement with U), the family of operators

{T̂ (g) ≡ U(g1)T̂ U(g2)
∗ = U(g)T̂ }g∈G, (194)

is a normalized tight frame in B2(H), based on (G, µG). Thus, we can identify the measure
space (Y, ν) of section 2 with the measure space (G, µG). The frame transform associated with
the frame (194) is the linear map DT̂ :B2(H) → L2(G) ≡ L2(G, µG; C)—(DT̂ Â)(g) :=
〈T̂ (g), Â〉B2(H), for every Â ∈ B2(H)—which is an isometry (the ‘dequantization map’).
We will denote by QT̂ : L2(G) → B2(H) the adjoint of the isometry DT̂ ; then, QT̂ (the
‘quantization map’) is a partial isometry that coincides with the pseudo-inverse of DT̂

QT̂ DT̂ = I, Ker(QT̂ ) = Ran(DT̂ )⊥. (195)

For the partial isometry QT̂ we have the following simple formula (compare with relation
(8)):

QT̂ � =
∫

G

dµG(g)�(g)T̂ (g), ∀� ∈ L2(G). (196)

We stress that the integral in formula (196) is a weak integral ofB2(H)-valued functions; hence,
a fortiori, it can also be regarded as a weak integral of bounded-operator-valued functions (see
remark 2).

As observed in section 2, the linear maps DT̂ and QT̂ induce in L2(G) a star product of
functions defined by (see definition (38))

�1 � �2 := DT̂ ((QT̂ �1)(QT̂ �2)), ∀�1,�2 ∈ L2(G). (197)

According to proposition 3, we have

(�1 � �2)(g) =
∫

G

dµG(g′)
∫

G

dµG(g′′)κT̂ (g, g′, g′′)�1(g
′)�2(g

′′), (198)

where

κT̂ (g, g′, g′′) := 〈T̂ (g), T̂ (g′)T̂ (g′′)〉B2(H) = tr(T̂ (g)∗T̂ (g′)T̂ (g′′)). (199)
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In particular, the subspace Ran(DT̂ ) of L2(G) is a r.k.H.s. (compare with formulae (17) and
(18))

�(g) =
∫

G

dµG(g′)	T̂ (g, g′)�(g′), ∀� ∈ Ran(DT̂ ), (200)

where the reproducing kernel has the following expression:

	T̂ (g, g′) := 〈T̂ (g), T̂ (g′)〉B2(H), (201)

and, for every couple of Hilbert–Schmidt operators Â1, Â2 ∈ B2(H), we have

(DT̂ Â1Â2)(g) =
∫

G

dµG(g′)
∫

G

dµG(g′′)κT̂ (g, g′, g′′)A1(g
′)A2(g

′′), (202)

with A1(g) ≡ (DT̂ Â1)(g), A2(g) ≡ (DT̂ Â2)(g).
Observe that it is possible to express, within the present framework, the expectation

values of quantum-mechanical observables. Recall, in fact, that the (bounded) left and right
multiplication operators in B2(H) by a bounded operator Â—i.e., respectively, the linear
operators: LÂ:B2(H) � B̂ �→ ÂB̂ ∈ B2(H) and RÂ:B2(H) � B̂ �→ B̂Â ∈ B2(H)—
are represented as suitable integral operators in the Hilbert space of frame transforms
Ran(DT̂ ) = DT̂ (B2(H)). Precisely, the ‘left’ and ‘right’ integral kernels

χL
T̂
(Â; g, g′) := 〈T̂ (g), ÂT̂ (g′)〉B2(H), χ

R
T̂
(Â; g, g′) := 〈T̂ (g), T̂ (g′)Â〉B2(H) (203)

see proposition 4—correspond to the ‘super-operators’ LÂ and RÂ, respectively. In particular,
for every trace class operator ρ̂ ∈ B1(H), the following formulae apply:

(DT̂ Âρ̂)(g) =
∫

G

dµG(g′)χL
T̂
(Â; g, g′)ρ(g′), ρ ≡ DT̂ ρ̂, (204)

(DT̂ ρ̂Â)(g) =
∫

G

dµG(g′)χR
T̂
(Â; g, g′)ρ(g′). (205)

Besides, for every normalized nonzero vector ψ in H—more precisely, for every rank one
projector ψ̂ ≡ |ψ〉〈ψ |—setting

γT̂ ,ψ̂ (g, g) := 〈U ∨ U(g)ψ̂, T̂ (g)〉B2(H) = 〈U(g)ψ, T̂ (g)U(g)ψ〉, (206)

we have (see proposition 5; consider that {U(g)ψ}g∈G is a normalized tight frame in H, based
on (G,µG))

tr(ρ̂) =
∫

G

dµG(g)

∫
G

dµG(g)γT̂ ,ψ̂ (g, g)ρ(g) ≡ tr(ρ). (207)

According to the second assertion of proposition 5, a positive Hilbert–Schmidt operator
B̂ ∈ B2(H) is a trace class operator if and only if∫

G

dµG(g)

∫
G

dµG(g)γT̂ ,ψ̂ (g, g)(DT̂ B̂)(g) < +∞. (208)

Observe also that, recalling the intertwining relation (173), from definition (206) we get

γT̂ ,ψ̂ (g, g) := 〈U ∨ U(g)ψ̂, T̂ (g)〉B2(H) = 〈T̂ (g), U ∨ U(g)ψ̂〉∗B2(H)

= (DT̂ U ∨ U(g)ψ̂)(g)∗

= (LM(g)DT̂ ψ̂)(g)∗. (209)

Remark 11. Formula (207) is a special case of a more general relation. In fact, let Ŝ be a
trace class operator in H such that tr(Ŝ) = 1; then, extending definition (206), let us set

γT̂ ,Ŝ (g, g) := 〈U ∨ U(g)Ŝ, T̂ (g)〉B2(H) = tr((U ∨ U(g)Ŝ∗)T̂ (g)). (210)
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At this point, using the ‘second trace formula’ (119) and the reconstruction formula for the
operator ρ̂, we find

tr(ρ̂) =
∫

G

dµG(g) tr((U ∨ U(g)Ŝ∗)ρ̂)

=
∫

G

dµG(g)

∫
G

dµG(g)γT̂ ,Ŝ (g, g)ρ(g). (211)

Moreover, arguing as above, we conclude that

γT̂ ,Ŝ (g, g) = (LM(g)DT̂ Ŝ)(g)∗. (212)

This formula shows that the function g �→ γT̂ ,Ŝ (g, g)∗ is contained in Ran(DT̂ ).

In the special case where T̂ ∈ B1(H), exploiting again the second trace formula (119),
we find also that

tr(ρ̂) tr(T̂ )∗ = tr(ρ̂) tr(T̂ ∗) =
∫

G

dµG(g)ρ(
�
g), ρ ≡ DT̂ ρ̂. (213)

Hence, in particular, |tr(T̂ )|2 = ∫
G

dµG(g)(DT̂ T̂ )(
�
g), and, if T̂ ∈ B1(H) is such that

tr(T̂ ) �= 0, we have

|tr(ρ̂)| = 1√∫
G

dµG(g)(DT̂ T̂ )(
�
g)

∣∣∣∣∫
G

dµG(g)ρ(
�
g)

∣∣∣∣ . (214)

We are now ready to provide a suitable expression for the quantity tr(Âρ̂), which—in
the special case where the bounded operator Â is selfadjoint, and the trace class operator ρ̂ is
positive and of unit trace—can be regarded as a quantum-mechanical expectation value. From
relations (204), (205) and (207) it follows immediately that

tr(Âρ̂) =
∫

G

dµG(g)

∫
G

dµG(g)

∫
G

dµG(g′)γT̂ ,ψ̂ (g, g)χL
T̂
(Â; g, g′)ρ(g′)

=
∫

G

dµG(g)

∫
G

dµG(g)

∫
G

dµG(g′)γT̂ ,ψ̂ (g, g)χR
T̂
(Â; g, g′)ρ(g′). (215)

Of course, analogous formulae involving the more general type of integral kernel γT̂ ,Ŝ (·, ·)
defined above hold too. Moreover, in the special case where T̂ ∈ B1(H), with tr(T̂ ) �= 0,
formula (213) implies

tr(Âρ̂) = tr(T̂ ∗)−1
∫

G

dµG(g)

∫
G

dµG(g′)χL
T̂
(Â; �

g, g′)ρ(g′)

= tr(T̂ ∗)−1
∫

G

dµG(g)

∫
G

dµG(g′)χR
T̂
(Â; �

g, g′)ρ(g′) = tr(ρ̂Â). (216)

In conclusion, having in mind applications to quantum mechanics, within the framework
outlined in the present section we have the following picture. With states (density operators)
are associated functions—the frame transforms of the density operators—belonging to the
r.k.H.s. Ran(DT̂ ), which is endowed with a star product that reproduces the product of the
H∗-algebra B2(H). On the other hand, with observables are associated suitable (left and right)
integral kernels. The quantum-mechanical expectation values are given by integral formulae
involving the frame transforms associated with states and the integral kernels. Note that in
this picture the norm of a quantum observable can be defined ‘intrinsically’. Indeed, for every
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bounded selfadjoint operator Â in H, recalling definition (42) and relation (44), and using the
fact that LÂ is a bounded selfadjoint operator in B2(H), we have

‖Â‖ = ‖LÂ‖
= sup

0�=B̂∈B2(H)

‖B̂‖−2
B2(H)|〈B̂, ÂB̂〉B2(H)| (LÂselfadjoint)

= sup
0�=�∈Ran(DT̂ )

‖�‖−2
L2(G)

∣∣∣∣∫
G

dµG(g)

∫
G

dµG(g′)χL
T̂
(Â; g, g′)�(g)∗�(g′)

∣∣∣∣ . (217)

Moreover, taking into account relation (56), we find out that in formula (217) one can relax
the condition that � ∈ Ran(DT̂ ); i.e.

‖Â‖ = sup
0�=�∈L2(G)

‖�‖−2
L2(G)

∣∣∣∣∫
G

dµG(g)

∫
G

dµG(g′)χL
T̂
(Â; g, g′)�(g)∗�(g′)

∣∣∣∣
=:

∥∥χL
T̂
(Â; ·, ·)∥∥. (218)

Of course, using the fact that ‖Â‖ = ‖RÂ‖, one obtains a completely analogous relation
involving the right integral kernel χR

T̂
(Â; ·, ·).

Therefore, we can identify the Jordan–Lie algebra of bounded selfadjoint operators in H
with the vector space of the associated left integral kernels endowed with the norm defined
by formula (218), and with the Jordan product and the Lie bracket defined by (compare with
formulae (60) and (61), respectively)

χL
T̂
(Â1 ◦ Â2; g′, g′′) = 1

2

∫
G

dµG(g)
(
χL

T̂
(Â1; g′, g)χL

T̂
(Â2; g, g′′)

+ χL
T̂
(Â2; g′, g)χL

T̂
(Â1; g, g′′)

) =: χL
T̂
(Â1; ·, ·) ◦ χL

T̂
(Â2; ·, ·), (219)

χL
T̂
({Â1, Â2}; g′, g′′) = 1

i

∫
G

dµG(g)
(
χL

T̂
(Â1; g′, g)χL

T̂
(Â2; g, g′′)

−χL
T̂
(Â2; g′, g)χL

T̂
(Â1; g, g′′)

) =:
{
χL

T̂
(Â1; ·, ·), χL

T̂
(Â2; ·, ·)}, (220)

for any couple of bounded selfadjoint operators Â1, Â2 ∈ B(H). It is clear that a similar
identification holds for the (suitably equipped) vector space of right integral kernels.

Assume now that the analyzing operator T̂ ∈ B2(H) is selfadjoint. Observe that, in this
case, the image through DT̂ of the set P(H) of pure states (rank-one projectors) in the Hilbert
space H is characterized as a subset of Ran(DT̂ ) in the following way:

DT̂ (P(H)) = {� ∈ Ran(DT̂ ): � = ��, � � � = �, tr(�) = 1}, (221)

where

tr(�) =
∫

G

dµG(g)

∫
G

dµG(g)γT̂ ,ψ̂ (g, g)�(g). (222)

Indeed—recalling remark 9, and formulae (202) and (207)—the image through the isometry
DT̂ of the set of orthogonal projectors in H is characterized by the couple of conditions

� = ��, � � � = �. (223)

At this point, the third condition—tr(�) = 1—ensures that QT̂ � is a trace class operator
(note that QT̂ � is positive and recall condition (208)), i.e. a finite-rank projector, and in
particular a rank one projector. This characterization of the set DT̂ (P(H)) allows us to obtain
an alternative expression of the norm of an observable in terms of its left and right integral
kernels. In fact, for every bounded selfadjoint operator Â in H, we have that

‖Â‖ = sup
ψ∈H:‖ψ‖=1

|〈ψ, Âψ〉| = sup
P̂∈P(H)

|tr(ÂP̂)|. (224)
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Therefore, if the analyzing operator T̂ ∈ B2(H) is selfadjoint, in terms of the left integral
kernel χL

T̂
(Â; ·, ·), the norm of the operator Â has the following alternative expression:

‖Â‖ = sup

{∣∣∣∣ ∫
G

dµG(g)

∫
G

dµG(g)

∫
G

dµG(g′)γT̂ ,ψ̂ (g, g)χL
T̂
(Â; g, g′)�(g′)

∣∣∣∣:
� ∈ Ran(D),� = ��, � � � = �, tr(�) = 1

}
= ∥∥χL

T̂
(Â; ·, ·)∥∥. (225)

Clearly, an analogous expression involving the right integral kernel χR
T̂
(Â; ·, ·) holds too.

We leave to the reader the simple exercise of deriving how the natural symmetry action
of the group G on bounded operators in H is represented in the vector spaces of the associated
left and right integral kernels.

8. A remarkable example

In this section we will focus on the case where the group G is the additive group R × R (the
group of translations on the 1 + 1-dimensional phase space; the generalization to the n + n-
dimensional case is straightforward) and the square integrable projective representation U is the
Weyl system (137). We will denote a generic element of G ≡ R × R as a complex variable—
z ≡ q + ip—and a generic element of the direct product group G ≡ (R × R) × (R × R),
accordingly, as z = (z1 , z2). As in section 7, the diagonal element (z, z) of G will be denoted

by
�
z . We recall that the Haar measure µG on G ≡ R × R, normalized in agreement with U,

is given by dµG(z) = (2π)−1dz ≡ (2π)−1dqdp; hence, the Haar measure µG on G is given
by dµG(z) = (2π)−2dz ≡ (2π)−2dz1dz2 . At this point, as a consequence of theorem 2, we
have that for every normalized nonzero Hilbert–Schmidt operator T̂ in L2(R) the family of
operators

{T̂ (z) ≡ U(z1)T̂ U(z2)
∗ = U(z)T̂ }z∈G (226)

is a normalized tight frame in B2(L2(R)), based on (G, µG). This frame allows us to define
the isometry

DT̂ : B2 ≡ B2(L
2(R)) → L2 ≡ L2(G) (227)

by setting

(DT̂ Â)(z) := 〈T̂ (z), Â〉B2 , ∀ Â ∈ B2. (228)

The range of the isometry DT̂ is a proper subspace of L2 and a r.k.H.s. (embedded in L2),
with reproducing kernel

	T̂ (z, z̃) := 〈T̂ (z), T̂ (z̃)〉B2; (229)

taking into account the fact that U(z)∗ = U(−z), we have

	T̂ (z, z̃) = tr(U(z2)T̂
∗U(−z1)U(z̃1)T̂ U(−z̃2))

= e
1
4 (z∗

1 z̃1−z1 z̃∗
1) e− 1

4 (z∗
2 z̃2−z2 z̃∗

2) tr(U(z2 − z̃2)T̂
∗U(z1 − z̃1)

∗T̂ )

= exp
(

1
4 (z∗

1 z̃1 − z1 z̃
∗
1 − z∗

2 z̃2 + z2 z̃
∗
2)

)
(DT̂ T̂ )(z − z̃), (230)

with z ≡ (z1 , z2), z̃ ≡ (z̃1 , z̃2). Moreover, the isometry DT̂ intertwines the unitary
representation U ∨ U : G ≡ R × R → U(B2),

U ∨ U(z)Â = U(z)ÂU(−z), U(−z) = U(z)∗, (231)

with the unitary representation LM: G → U(L2) defined by

(LM(z)f )(z) := M(z;z)f (z − �
z), ∀ f ∈ L2, (232)
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where

M(z;z) := exp
( i

2
(q(p2 − p1) − p(q2 − q1))

)
, z ≡ q + ip, z ≡ (q1 + ip1, q2 + ip2).

(233)

Of course all the formulae obtained in section 7 apply to this case; we will present some
detailed calculations and examples elsewhere. We want now to highlight, briefly, the relation
between our results and the fundamental seminal papers [18] of Cahill and Glauber on quasi-
distributions. In the cited papers, Cahill and Glauber (with aims partially distinct from ours)
introduced and studied a family of normal operators with spectral decomposition

T̂ s := 2

1 − s

∞∑
n=0

(
s + 1

s − 1

)n

|n〉〈n|, s ∈ C, s �= 1, (234)

where {|n〉}n=0,1,... are the standard eigenfunctions of the harmonic oscillator Hamiltonian.
From the first of the papers [18] we learn, in particular, the following (easily verifiable) facts8.

• For Re(s) � 0, the operator T̂ s is bounded and

‖T̂ s‖ =
∣∣∣∣ 2

1 − s

∣∣∣∣ ; (235)

moreover, T̂ ∗
s = T̂ s∗ .

• For Re(s) < 0, the operator T̂ s belongs to the Banach space B1(L2(R)) (hence, in
particular, to the Hilbert space B2 ≡ B2(L2(R))), and

‖T̂ s‖1 := tr(|T̂ s |) = 2

|1 − s|
∞∑

n=0

∣∣∣∣ s + 1

s − 1

∣∣∣∣n = 2

|1 − s| − |1 + s| , (236)

‖T̂ s‖2 :=
√

〈T̂ s , T̂ s〉B2 = 1√|Re(s)| ; (237)

thus, ‖·‖1 and ‖·‖2 are the trace class and Hilbert–Schmidt norms, respectively; moreover,

tr(T̂ s) = 1; (Re(s) < 0). (238)

• For Re(s) = 0, the operator T̂ s belongs to the set (B(L2(R))�B2).
• For Re(s) > 0, s �= 1, the operator T̂ s is unbounded.

Cahill and Glauber proposed the following (in general, formal) decomposition of a
Hilbert–Schmidt operator (‘bounded’, in their terminology) Â ∈ B2:

Â =
∫

G

A−s(z)T̂ s(z)
dz

2π
, (239)

where T̂ s(z) := U(z)T̂ sU(−z), s �= 1, and

A−s(z) := tr(T̂ −s(z)Â). (240)

In particular, one can show that, for s = 0, formula (240)—with the trace suitably interpreted
as in section 5—defines the Wigner distribution (note that �̂ ≡ 1

2 T̂ 0 is the parity operator
in L2(R): (�̂f )(x) = f (−x)). In general, the mathematically rigorous interpretation of the
decomposition formula (239) is problematic since, for Re(s) �= 0, it involves unbounded
operators, either in the formula itself, or in the definition of the quasi-distribution A−s

8 We warn the reader that in the mentioned paper the terminology for indicating the bounded, Hilbert–Schmidt and
trace class operators, as well as the choice of the symbols for the associated norms, is somewhat unusual.
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(i.e. the pair (T̂ s, T̂ −s) contains an unbounded operator, for Re(s) �= 0). Note, moreover, that
for s = 1 the decomposition is not defined at all (the operator T̂ 1 is not defined); therefore, with
the Husimi–Kano quasi-distribution A−1 (see [18, 40, 41, 51])—A−1(z) := 〈z|Â|z〉, where
{|z〉 ≡ U(z)|0〉}z∈C is the family of coherent states of the quantum harmonic oscillator—is
not associated any (even formal) reconstruction formula.

In our framework, taking into account relation (237), with every Hilbert–Schmidt operator
T̂ s—with Re(s) < 0—one can associate a normalized tight frame

{
√

|Re(s)|T̂ s(z)}z∈G, where T̂ s(z) := U(z1)T̂ sU(−z2),z ≡ (z1 , z2), (241)

(thus T̂ s(z) ≡ T̂ s(
�
z)), in the Hilbert space B2, based on (G, µG). Besides, we have the

decomposition formula

Â = |Re(s)| 1
2

(2π)2

∫
G

As(z)T̂ s(z) dz, Â ∈ B2, (242)

where

As(z) :=
√

|Re(s)|〈T̂ s(z), Â〉B2

=
√

|Re(s)| tr(T̂ s(z)∗Â) =
√

|Re(s)| tr(T̂ s∗(ž)Â), ž ≡ (z2 , z1). (243)

Therefore, for every s ∈ C such that Re(s) < 0, we have that

As(
�
z) =

√
|Re(s)|As∗(z), (244)

and, if Â is a trace class operator,∫
G

As(
�
z) dz =

√
|Re(s)| tr(Â),

∫
G

As(z) dz = tr(Â), (245)

where we have used formula (213) and the fact that tr(T̂ s) = 1. For s = −1, we have that
T̂ −1 = |0〉〈0|; hence

T̂ −1(z) = |z1〉〈z2 |, A−1(z) = 〈z1 |Â|z2〉, A−1(z) = A−1(
�
z) = 〈z|Â|z〉, (246)

Â = 1

(2π)2

∫
G

〈z1 |Â|z2〉|z1〉〈z2 | dz1dz2 . (247)

Thus, the Husimi–Kano quasi-distribution A−1 can be regarded as the ‘restriction to the
diagonal’ of the function A−1, and formula (247) is the ‘non-diagonal coherent state
representation of an operator’ (see [48]). Moreover, for every bounded operator B̂ ∈ B(L2(R)),
we have the following double integral decomposition (see relation (116) and remark 6)

B̂ = 1

(2π)2

∫
G

dz1

∫
G

dz2〈z1 |B̂|z2〉|z1〉〈z2 |. (248)

9. Conclusions and perspectives

In the present paper, we have reconsidered some fundamental aspects of the quantization–
dequantization theory in the light of the mathematical notion of frame. We have shown
(see section 2) that—in addition to the standard formulae that play a fundamental role in
(generalized) wavelet analysis—by considering frames of Hilbert–Schmidt operators one is
able to obtain a remarkable representation of a quantum system. It turns out that states (density
operators) are naturally represented by ‘phase space functions’ belonging to a r.k.H.s. which is
endowed with a ‘star product’; while observables are represented by (left and right) ‘integral
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kernels’ forming vector spaces endowed with a structure of Jordan–Lie algebra. Quantum-
mechanical expectation values are given by simple integral formulae. We have then shown
(see sections 3–5) that the classical Weyl–Wigner approach to quantization–dequantization,
although not directly related to the notion of frame, relies on the notion of square integrable
projective representation. Using this mathematical tool one can introduce (see section 6) a
class of tight frames of Hilbert–Schmidt operators. A frame of this kind is generated by a
square integrable representation of a group that can be regarded as the ‘symmetry group’ of
a quantum system, and by an ‘analyzing operator’, whose choice can be adapted to specific
applications or requirements (as it happens in wavelet analysis). Such a frame allows us
to achieve a remarkable implementation (see section 7) of the abstract scheme outlined in
section 2. In the case where the square integrable representation is the Weyl system, there
is a link between our approach and the formalism of ‘s-parametrized quasi-distributions’
introduced by Cahill and Glauber (see section 8), a link that on our opinion will deserve
further exploration. It is worth noticing that the s-parametrized quasi-distribution associated
with a density operator is—for Re(s) > 0—in general, a distribution (in the mathematical
sense, i.e. a functional) rather than an ordinary function; this aspect has been extensively
investigated in the literature in particular for the Glauber–Sudarshan ‘P quasi-distribution’
(corresponding to the case where s = 1), see [23, 48] and references therein. On the contrary,
in our framework, with both states and observables are associated ordinary functions: square
integrable functions and integral kernels, respectively. This is coherent with the distinct roles
that these physical entities play in quantum theory.

We plan to develop the basic results established in the present contribution in several
directions. In particular, we will mention the representation—in our framework—of specific
quantum systems and of ‘super-operators’ (that play a fundamental role in the theory of open
quantum systems), and the study of the classical limit of quantum mechanics. Finally, we note
that our approach and results may turn to be relevant for the important issue of informational
completeness (see [52, 53] and references therein) in quantum mechanics.
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